高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结工艺对UN-30%U3Si2芯块的致密化影响研究

粟丹科 潘小强 陆永洪 杨静 王挺 段苗苗

粟丹科, 潘小强, 陆永洪, 杨静, 王挺, 段苗苗. 烧结工艺对UN-30%U3Si2芯块的致密化影响研究[J]. 核动力工程, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175
引用本文: 粟丹科, 潘小强, 陆永洪, 杨静, 王挺, 段苗苗. 烧结工艺对UN-30%U3Si2芯块的致密化影响研究[J]. 核动力工程, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175
Su Danke, Pan Xiaoqiang, Lu Yonghong, Yang Jing, Wang Ting, Duan Miaomiao. Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets[J]. Nuclear Power Engineering, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175
Citation: Su Danke, Pan Xiaoqiang, Lu Yonghong, Yang Jing, Wang Ting, Duan Miaomiao. Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets[J]. Nuclear Power Engineering, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175

烧结工艺对UN-30%U3Si2芯块的致密化影响研究

doi: 10.13832/j.jnpe.2025.01.0175
详细信息
    作者简介:

    粟丹科(1996—),男,硕士研究生,现主要从事核燃料制备及性能方面的研究,E-mail: 1905553146@qq.com

  • 中图分类号: TL211

Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets

  • 摘要: 本文基于粉末冶金技术制备了UN-30%U3Si2复合燃料芯块(U3Si2质量百分数为30%),研究了烧结气氛、烧结温度、烧结时间等烧结工艺对芯块烧结密度的影响规律,主要通过芯块的化学成分、物相组成以及微观组织变化等方面进行致密化过程分析。结果表明,UN-30%U3Si2复合燃料芯块真空烧结相比氩气气氛烧结更有利于致密化;随着烧结温度(1600~1675℃)升高,致密度逐渐增加,最高可达97%T.D.(T.D.为理论密度);当烧结温度高于U3Si2熔点之后,随着温度上升,U3Si2相在高真空条件下会烧损挥发,并且N元素有向U3Si2相扩散的趋势,形成未知USixNy相;烧结温度的升高或者烧结时间的延长,均有利于U3Si2相对UN相形成包覆。

     

  • 图  1  UN粉末XRD图谱

    PDF#xx-xxxx—标准衍射卡片编号;2θ—衍射角度

    Figure  1.  X-ray Diffraction Pattern of UN Powder

    图  2  U3Si2粉末XRD图谱

    Figure  2.  X-ray Diffraction Pattern of U3Si2 Powder

    图  3  UN-30% U3Si2粉末XRD图谱

    Figure  3.  X-ray Diffraction Pattern of UN-30%U3Si2 Powder

    图  4  UN-30%U3Si2复合燃料芯块烧结工艺制度

    Figure  4.  Sintering Process System of UN-30%U3Si2 Composite Fuel Pellets

    图  5  1650℃烧结UN-30%U3Si2复合芯块的微观形貌对比

    Figure  5.  Comparison of Microstructure of UN-30%U3Si2 Composite Pellets Sintered at 1650°C

    图  6  1650℃真空烧结UN-30%U3Si2复合芯块的形貌与背散射结果

    Figure  6.  Morphology and Backscattering Results of Sintered Composite Pellets in Vacuum at 1650°C

    图  7  UN-30%U3Si2复合芯块烧结密度随温度变化规律

    Figure  7.  Variation of Sintering Density of UN-30%U3Si2 Composite Pellets with Temperature

    图  8  不同烧结温度下UN-30%U3Si2复合芯块的SEM形貌照片

    Figure  8.  SEM Morphology Photos of UN-30%U3Si2 Composite Pellets at Different Sintering Temperatures

    图  9  不同烧结温度下UN-30%U3Si2复合芯块的气孔直径变化趋势

    Figure  9.  Variation Trend of Porosity of UN-30%U3Si2 Composite Pellets at Different Sintering Temperatures

    图  10  不同温度下UN-30%U3Si2复合芯块的XRD图谱

    Figure  10.  X-ray Diffraction Patterns of Sintered UN-30%U3Si2 Composite Pellets at Different Temperatures

    图  11  1700℃烧结不同时间的UN-30%U3Si2复合芯块密度变化趋势

    Figure  11.  Density Variation Trend of N-30%U3Si2 Composite Pellets with Different Sintering Times at 1700°C

    图  12  1700℃烧结4 h的UN-30%U3Si2复合芯块边缘金相照片

    Figure  12.  Metallographic Photo of 30%U3Si2 Composite Pellet Edge Sintered at 1700°C for 4 h

    图  13  1700℃下分别烧结1 h、4 h后UN-30%U3Si2复合芯块SEM图片

    Figure  13.  SEM of 30%U3Si2 Composite Pellets Sintered at 1700°C for 1 h and 4 h Respectively

    表  1  真空、氩气气氛烧结UN-30%U3Si2复合芯块的元素含量(1650℃)

    Table  1.   Elemental Content of Sintered UN-30%U3Si2 Composite Pellets in Vacuum and Argon Atmosphere (1650°C)

    烧结条件 元素质量百分数/%
    U N Si C O
    真空 92.09 4.80 2.10 0.16 0.81
    氩气 92.33 4.20 2.06 0.22 1.00
    下载: 导出CSV

    表  2  图6a中的能谱分析结果

    Table  2.   Results of Energy Spectrum Analysis in Fig. 6a

    元素质量百分数/%
    U N Si O
    EDS Spot 1 84.14 12.73 0 3.13
    EDS Spot 2 75.19 3.74 16.16 4.91
    EDS Spot 3 82.34 9.96 0 7.70
    下载: 导出CSV

    表  3  不同烧结温度下UN-30%U3Si2复合芯块的Si、U含量

    Table  3.   Si and U Contents of UN-30%U3Si2 Composite Pellets at Different Sintering Temperatures

    元素 质量百分数/%
    1600℃ 1625℃ 1650℃ 1675℃ 1700℃ 1725℃
    Si 2.22 2.17 2.18 2.10 1.81 0.97
    U 92.06 92.33 91.17 92.09 92.47 93.17
    下载: 导出CSV

    表  4  1700℃烧结不同时间UN-30%U3Si2复合芯块的Si、U含量

    Table  4.   Si and U Contents of 30%U3Si2 Composite Pellets Sintered at 1700°C for Different Time

    元素 质量百分数/%
    1 h 2 h 3 h 4 h
    Si 1.90 1.81 1.95 2.00
    U 91.22 92.47 92.23 92.50
    下载: 导出CSV
  • [1] 张喜燕. UO2-锆合金化学反应条件下的包壳水侧氧化动力学[J]. 核科学与工程,1994, 14(3): 262-265.
    [2] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [3] KOO Y H, YANG J H, PARK J Y, et al. KAERI’s development of LWR accident-tolerant fuel[J]. Nuclear Technology, 2014, 186(2): 295-304. doi: 10.13182/NT13-89
    [4] KIM D J, KIM K S, KIM D S, et al. Development status of microcell UO2 pellet for accident-tolerant fuel[J]. Nuclear Engineering and Technology, 2018, 50(2): 253-258. doi: 10.1016/j.net.2017.12.008
    [5] ZHOU W, ZHOU W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – A comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66-86. doi: 10.1016/j.anucene.2018.04.040
    [6] 陆永洪,贾代坤,粟丹科,等. 真空烧结U3Si2燃料芯块的微观组织与导热性能[J]. 粉末冶金材料科学与工程,2022, 27(4): 436-441.
    [7] MATTHEWS R B, CHIDESTER K M, HOTH C W, et al. Fabrication and testing of uranium nitride fuel for space power reactors[J]. Journal of Nuclear Materials, 1988, 151(3): 345.
    [8] YAPICI H, İPEK O, ÖZCEYHAN V, et al. Analysis of the rejuvenation performance of hybrid blankets by using uranium fuels (UN, UC, UO2, U3Si2) and different coolants for various volume fraction[J]. Annals of Nuclear Energy, 2000, 27(4): 279-294. doi: 10.1016/S0306-4549(99)00058-4
    [9] GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 553: 153026. doi: 10.1016/j.jnucmat.2021.153026
    [10] WOOD E S, WHITE J T, GROTE C J, et al. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen[J]. Journal of Nuclear Materials, 2018, 501: 404-412. doi: 10.1016/j.jnucmat.2018.01.002
    [11] REST J. A model for fission-gas-bubble behavior in amorphous uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 107-117. doi: 10.1016/j.jnucmat.2003.11.008
    [12] KIM Y S, HOFMAN G L, REST J, et al. Temperature and dose dependence of fission-gas-bubble swelling in U3Si2[J]. Journal of Nuclear Materials, 2009, 389(3): 443-449. doi: 10.1016/j.jnucmat.2009.02.037
    [13] XIONG Q W, QIAN L B, SONG G L, et al. Realistic performance assessment of FeCrAl-UN/U3Si2 accident tolerant fuel under loss-of-coolant accident scenario[J]. Reliability Engineering & System Safety, 2024, 243: 109847.
    [14] HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
    [15] JOHNSON K D, RAFTERY A M, LOPES D A, et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 2016, 477: 18-23. doi: 10.1016/j.jnucmat.2016.05.004
    [16] JOHNSON K D, WALLENIUS J, JOLKKONEN M, et al. Spark plasma sintering and porosity studies of uranium nitride[J]. Journal of Nuclear Materials, 2016, 473: 13-17. doi: 10.1016/j.jnucmat.2016.01.037
    [17] GONG B W, KARDOULAKI E, YANG K, et al. UN and U3Si2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Ceramics International, 2022, 48(8): 10762-10769. doi: 10.1016/j.ceramint.2021.12.292
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  90
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-21
  • 修回日期:  2024-06-12
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回