Study on the Influence Range of Gas Cloud Explosion Around Nuclear Power Plant
-
摘要: 在核电厂周边各类事故危害因素中,爆炸冲击波超压后果比较严重。核安全导则中采用Trinitrotoluene(TNT)当量法评估爆炸冲击波超压,缺少气云爆炸相关计算模型。本文通过对TNT当量法、The Netherlands Organization for Applied Scientific Research(TNO)模型、Baker-Strehlow-Tang(BST)模型进行分析,评估了3类模型的适用性。结果表明,TNT当量法计算结果偏保守,而BST模型可以较为准确地评估核电厂周边天然气管线爆炸冲击波超压影响范围,根据BST模型计算结果,3条典型管线发生意外爆炸产生的冲击波超压对核电厂影响很小。Abstract: Among all kinds of accident hazard factors around the nuclear power plant, the consequence of explosion shock wave overpressure is more serious. In the nuclear safety guidelines, the TNT equivalent method is used to evaluate the overpressure of explosion shock wave, and there is no calculation model related to gas cloud explosion. By analyzing the Trinitrotoluene (TNT) equivalent method, the Netherlands Organization for Applied Scientific Research (TNO) model and the Baker-Strehlow-Tang (BST) model, this paper evaluates the applicability of the three models. The results show that the calculation results of TNT equivalent method are conservative, while the BST model can accurately evaluate the impact range of explosion shock wave overpressure of natural gas pipelines around the nuclear power plant. According to the calculation results of the BST model, the shock wave overpressure caused by the accidental explosion of three typical pipelines has little effect on the nuclear power plant.
-
Key words:
- Safety engineering /
- Nuclear power plant /
- Natural gas pipelines /
- Leakage diffusion /
- Explosion
-
表 1 爆炸强度定性判断表
Table 1. Qualitative Judgment of Explosion Intensity
点火能 受阻塞程度 受约束程度 强度等级 弱 强 强 弱 不存在阻塞 不存在约束 存在约束 √ √ √ 7~10 √ √ √ 7~10 √ √ √ 5~7 √ √ √ 5~7 √ √ √ 4~6 √ √ √ 4~6 √ √ √ 4~5 √ √ √ 4~5 √ √ √ 3~5 √ √ √ 2~3 √ √ √ 1~2 √ √ √ 1 √表示选取的条件,根据选取的条件确定强度等级 表 2 核电厂周边管线参数汇总表
Table 2. Summary of Parameters of Pipelines around Nuclear Power Plant
参数 参数值 管线A 管线B 管线C 管径/mm 1200 1100 600 壁厚/mm 22 22 8 阀室间距/km 25 15 18 设计压力/MPa 10 10 6.3 与厂址距离/m 3000 2500 2000 泄漏质量流量/(kg·s−1) 5468 4594 861 响应关阀时间/s 168 168 108 剩余气体量/kg 1824094 919648 206852 总泄漏量/kg 3661342 2463568 392828 表 3 TNT当量法计算参数及结果
Table 3. Calculation Parameters and Results of TNT Equivalent Method
参数 管线A 管线B 管线C 能量经验系数 0.04 0.04 0.04 天然气燃烧热/(MJ·kg−1) 56.164[14] 56.164 56.164 泄漏的燃料总量/kg 3661342 2463568 392828 TNT爆炸热值/(MJ·kg−1) 4.52 4.52 4.52 TNT当量/kg 3275612 2204026 351443 7 kPa超压影响距离/m 2673 2342 1270 表 4 基于TNO模型的天然气管线断裂爆炸冲击波超压影响范围计算过程参数及结果
Table 4. Calculation Process Parameters and Results of Overpressure Influence Range of Air Shock Wave in Natural Gas Pipeline Rupture Explosion Based on TNO Model
过程参数 计算结果 管线A 管线B 管线C 比距离 爆炸强度4 0.67 0.67 0.67 爆炸强度5 1.29 1.29 1.29 爆炸强度6 3.40 3.40 3.40 爆炸源燃烧能/1013J 20.56 13.84 2.21 实际距离/m 爆炸强度4 848 743 403 爆炸强度5 1633 1431 776 爆炸强度6 4305 3772 2045 表 5 基于BST模型的天然气管线断裂爆炸冲击波超压影响范围计算过程参数及结果
Table 5. Calculation Process Parameters and Results of Overpressure Influence Range of Air Shock Wave in Natural Gas Pipeline Rupture Explosion Based on BST Model
过程参数 计算结果 管线A 管线B 管线C 最大火焰速度/ (m·s−1) 1405 1150 471 马赫数 4.13 3.38 1.39 最大超压/kPa 932 731 225 10 kPa超压影响距离/m 1810 1590 860 -
[1] 中国国家核安全局. 核电厂厂址选择的外部人为事件: HAD 101/04[S]. 北京: 国家核安全局,1989: 451-484. [2] HELD M. TNT-equivalent[J]. Propellants, Explosives, Pyrotechnics, 1983, 8(5): 158-167. doi: 10.1002/prep.19830080507 [3] STREHLOW R A. Blast waves generated by constant velocity flames: a simplified approach[J]. Combustion and Flame, 1975, 24: 257-261. doi: 10.1016/0010-2180(75)90155-8 [4] KUHL A L, KAMEL M M, OPPENHEIM A K. Pressure waves generated by steady flames[J]. Symposium (International) on Combustion, 1973, 14(1): 1201-1215. doi: 10.1016/S0082-0784(73)80108-0 [5] GUIRAO C M, BACH G G, LEE J H. Pressure waves generated by spherical flames[J]. Combustion and Flame, 1976, 27: 341-351. doi: 10.1016/0010-2180(76)90039-0 [6] VAN DEN BOSCH C J H. Methods for the calculation of physical effects[M]. The Hague, Netherlands: Committee for the Prevention of Disasters, 2005: 5.39-5.44. [7] VAN DEN BERG AC, EGGEN MM. Guidance of the application of the multi-energy method[C]//The 2nd International Specialist Meeting on Fuel Air Explosions. Bergen, Norway, 1996: 6. [8] AHMAD A M, RASHID Z A, ALIAS A B, et al. Predicting blast overpressure caused by vapour cloud explosion at external vicinity of chemical processing plant[J]. Advanced Materials Research, 2015, 1113: 388-397. doi: 10.4028/www.scientific.net/AMR.1113.388 [9] 张国顺. 燃烧爆炸危险与安全技术[M]. 北京: 中国电力出版社,2003: 566. [10] 国家能源局. 核电厂外部人为事件调查与评价技术规范: NB/T 20200[S]. 北京: 国家能源局,2013: 11. [11] 全国安全生产标准化技术委员化学品安全分技术委员会. 中国标准书号: AQ/T 3046-2013[S]. 北京: 中国标准出版社,2013: 43-45. [12] 李明智. 开放空间大尺度可燃气云爆燃机理及特征研究[D]. 北京: 北京理工大学,2019. [13] 生态环境部. 建设项目环境风险评价技术导则: HJ 169[S]. 北京: 中国环境科学出版社,2018: 8. [14] HAYNES W M. CRC handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2016: 2670. -
计量
- 文章访问数: 139
- HTML全文浏览量: 85
- PDF下载量: 14
- 被引次数: 0