高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OpenFOAM的激光去污产生气溶胶及其喷淋去除特性研究

王岩松 梁辉 侯宇轩 陈宇奇 孙中宁

王岩松, 梁辉, 侯宇轩, 陈宇奇, 孙中宁. 基于OpenFOAM的激光去污产生气溶胶及其喷淋去除特性研究[J]. 核动力工程, 2025, 46(1): 279-288. doi: 10.13832/j.jnpe.2025.01.0279
引用本文: 王岩松, 梁辉, 侯宇轩, 陈宇奇, 孙中宁. 基于OpenFOAM的激光去污产生气溶胶及其喷淋去除特性研究[J]. 核动力工程, 2025, 46(1): 279-288. doi: 10.13832/j.jnpe.2025.01.0279
Wang Yansong, Liang Hui, Hou Yuxuan, Chen Yuqi, Sun Zhongning. Numerical Investigation of Aerosol Generation by Laser Decontamination and Aerosol Removal by Spray Based on OpenFOAM[J]. Nuclear Power Engineering, 2025, 46(1): 279-288. doi: 10.13832/j.jnpe.2025.01.0279
Citation: Wang Yansong, Liang Hui, Hou Yuxuan, Chen Yuqi, Sun Zhongning. Numerical Investigation of Aerosol Generation by Laser Decontamination and Aerosol Removal by Spray Based on OpenFOAM[J]. Nuclear Power Engineering, 2025, 46(1): 279-288. doi: 10.13832/j.jnpe.2025.01.0279

基于OpenFOAM的激光去污产生气溶胶及其喷淋去除特性研究

doi: 10.13832/j.jnpe.2025.01.0279
基金项目: 日本原子能机构先进退役科学实验室(JAEA—CLADS)项目(R03I147);中央高校基本科研业务费专项资金资助(3072024XX1504)
详细信息
    作者简介:

    王岩松(2001—),男,博士研究生,现主要从事气溶胶迁移扩散方向研究,E-mail: _wys@hrbeu.edu.cn

    通讯作者:

    梁 辉,E-mail: liang.hui@hrbeu.edu.cn

  • 中图分类号: TL334

Numerical Investigation of Aerosol Generation by Laser Decontamination and Aerosol Removal by Spray Based on OpenFOAM

  • 摘要: 在核设施维修及退役过程中,可利用激光去污技术对安全壳内高放射性污染的构件表面进行清洗,但过程中会产生大量亚微米级放射性气溶胶颗粒。为防止放射性物质扩散至环境中,可采用安全壳喷淋系统对其进行去除。为研究激光去污产生气溶胶的物化特性以及气溶胶的喷淋去除效果,本研究进行激光去污实验以获取气溶胶生成速率、数量浓度和颗粒直径分布等数据;基于欧拉-拉格朗日方法,在OpenFOAM中开发了能够同时模拟气溶胶生成和气溶胶喷淋去除的数值模拟模型,对封闭空间内气溶胶的生成、迁移扩散以及喷淋去除特性进行了模拟和分析。模拟结果表明:喷淋区域内的气溶胶可以直接与喷淋液滴相互作用而被去除;非喷淋区域的气溶胶会随气流运动被夹带进入喷淋区域再被去除;气溶胶颗粒直径越大,喷淋去除效率也越高。本研究建立的数值模拟预测方法能够为未来优化封闭空间内激光去污及气溶胶喷淋去除技术提供模型基础和技术参考。

     

  • 图  1  表面激光去污及气溶胶生成测量实验装置示意图[7]

    Figure  1.  Schematic Diagram of Experimental Setup for Laser Decontamination and Aerosol Generation Measurement

    图  2  激光照射系统外观[7]

    Figure  2.  Appearance of Laser Irradiation System

    图  3  试样板表面熔点示意图[7]

    Figure  3.  Schematic Diagram of Melting Points on the Sample Surface

    图  4  不同功率激光照射下产生的气溶胶颗粒数量浓度

    Figure  4.  Quantity Concentration of Aerosol Particles Produced by Different Power Laser Irradiation

    图  5  喷淋去除气溶胶颗粒CFD模型框架图

    dp,n颗粒直径;dD,m液滴直径

    Figure  5.  Framework of CFD Model for Aerosol Particle Removal by Spray

    图  6  容器几何形状及网格细节

    Figure  6.  Container Geometry and Mesh Details

    图  7  喷淋液滴直径分布[8]

    Figure  7.  Particle Size Distribution of Spray Droplets

    图  8  喷淋液滴速度场[8]

    箭头方向代表液滴的速度方向,颜色代表液滴的速度大小

    Figure  8.  Spray Droplet Velocity Field

    图  9  喷淋液滴空间位置和气相速度

    子图a中球体代表喷淋液滴,其颜色深浅代表液滴直径

    Figure  9.  Spatial Position of Spray Droplets and Gas Phase Velocity

    图  10  无喷淋时直径为0.6 μm的气溶胶颗粒质量分数随时间的演化

    Figure  10.  Evolution of Aerosol (0.6 μm) Mass Fraction over Time without Spraying

    图  11  喷淋时直径为0.6 μm的气溶胶颗粒质量分数随时间的演化

    Figure  11.  Evolution of Aerosol (0.6 μm) Mass Fraction over Time with Spraying

    图  12  喷淋流场和直径为0.6 μm的气溶胶颗粒质量分数随时间的演化

    Figure  12.  Evolution of Spray Flow Field and Aerosol (0.6 μm) Mass Fraction with Time

    图  13  不同直径气溶胶颗粒的喷淋去除效率

    Figure  13.  Spray Removal Efficiency of Aerosol Particles with Different Diameters

    表  1  3种机械机制对单个液滴的气溶胶去除效率的经验公式[10-11]

    Table  1.   Empirical Formula for Aerosol Removal Efficiency of a Single Droplet by the Three Mechanical Mechanisms

    机械机制种类 经验公式
    惯性碰撞 $ \begin{array}{l} {\eta _{_{{\text{imp}}}}} = \left\{ \begin{array}{*{20}{l}}0{\text{ }} & S t < 0.0833 \\ {\left( {\dfrac{S t}{{S t + 0.5}}} \right)^2}{\text{ }} & 0.0833 \leqslant S t \leqslant 0.2 \\ 8.57 \cdot {\left( {\dfrac{S t}{{S t + 0.5}}} \right)^2} \cdot \left( {S t - 0.08336} \right) & S t > 0.2\end{array} \right. \\ S t = \dfrac{{{\rho _{\text{p}}}d_{\text{p}}^2\left| {{U_{\text{G}}} - {U_{\text{D}}}} \right|}}{{9{\mu _{\text{G}}}{d_{\text{D}}}}} \end{array} $
    拦截 $ \begin{array}{l}{\eta }_{\mathrm{int}}=\dfrac{1-{\alpha }_{\text{L}}}{J+\sigma \cdot K}\left[\left(\dfrac{R}{1+R}\right)+\dfrac{1}{2}{\left(\dfrac{R}{1+R}\right)}^{2} \cdot \left(3\sigma +4\right)\right] \\ \sigma =\dfrac{{\mu }_{\text{D}}}{{\mu }_{\text{G}}},R=\dfrac{{d}_{\text{p}}}{{d}_{\text{D}}}\\ J=1-\dfrac{6}{5} \cdot {\alpha }_{\text{L}}^{\tfrac{1}{3}}+\dfrac{1}{5} \cdot {\alpha }_{\text{L}}^{2},K=1-\dfrac{9}{5}{\alpha }_{\text{L}}^{\tfrac{1}{3}}+\alpha +\dfrac{1}{5} \cdot {\alpha }_{\text{L}}^{2}\end{array} $
    布朗扩散 $ \begin{gathered} {\eta _{{\text{diff}}}} = {\left( {2 \cdot Pe \cdot {d_{\text{D}}}} \right)^{ - \tfrac{1}{2}}} \\ Pe = \frac{{{d_{\text{D}}}\left| {{U_{\text{G}}} - {U_{\text{D}}}} \right|}}{{{D_{{\text{diff}}}}}},{D_{{\text{diff}}}} = \frac{{{k_{\text{B}}}TC}}{{3\pi {v_{\text{G}}}{\rho _{\text{G}}}{d_{\text{p}}}}} \\ C = \frac{{2.609\sqrt {2l} }}{{\sqrt {{d_{\text{p}}}} }}\quad 0.05{\text{ μm}} < {d_{\mathrm{p}}} < 1.0{\text{ μm}} \\ \end{gathered} $
      $ {\rho _{\text{p}}} $—颗粒密度,kg/m3;$ {d_{\text{p}}} $—颗粒直径,m;$ {\mu _{\text{G}}} $—空气动力粘度,Pa·s;$ {\alpha _{\text{L}}} $—液相体积分数;JK—经验系数;R—颗粒直径与液滴直径之比;$ \sigma $—液体动力粘度与空气动力粘度之比;Pe—贝克莱数;Ddiff—扩散系数,m2/s;kB—波尔兹曼常数;T—空气温度,K;C—坎宁安校正因子;$ {v_{\text{G}}} $—空气运动粘度,m2/s;${\rho _{\text{G}}} $—空气密度,kg/m3l—空气平均自由程,m
    下载: 导出CSV

    表  2  容器内气溶胶生成速率

    Table  2.   Rate of Aerosol Generation in the Container

    气溶胶命名dp/μm生成速率SG/(mg·s−1
    AP20.1980
    AP30.3050
    AP40.4078.26427×10−8
    AP50.5051.96517×10−6
    AP60.5831.06248×10−5
    AP70.7241.65405×10−5
    AP80.7781.82688×10−5
    AP90.8991.16819×10−5
    AP101.0383.16325×10−6
    下载: 导出CSV
  • [1] 赵菀,曹俊杰,王帅,等. 放射性表面污染金属废物激光去污工艺研究[J]. 核动力工程,2021, 42(5): 250-255. doi: 10.13832/j.jnpe.2021.05.0250.
    [2] 范凯,赵菀,张永领,等. 高能激光去污技术在核设施退役中的应用研究[J]. 核动力工程,2015, 36(S1): 207-210.
    [3] ZHOU Q, SAITO T, SUZUKI S, et al. Microparticles with diverse sizes and morphologies from mechanical and laser cutting of fuel debris simulants and geopolymer as a covering material[J]. Journal of Nuclear Science and Technology, 2021, 58(4): 461-472. doi: 10.1080/00223131.2020.1869623
    [4] PORCHERON E, DAZON C, GELAIN T, et al. Fukushima Daiichi fuel debris retrieval: results of aerosol characterization during laser cutting of non-radioactive corium simulants[J]. Journal of Nuclear Science and Technology, 2021, 58(1): 87-99. doi: 10.1080/00223131.2020.1806135
    [5] PORCHERON E, LEMAITRE P, MARCHAND D, et al. Experimental and numerical approaches of aerosol removal in spray conditions for containment application[J]. Nuclear Engineering and Design, 2010, 240(2): 336-343. doi: 10.1016/j.nucengdes.2008.08.023
    [6] KALTENBACH C, LAURIEN E. CFD simulation of aerosol particle removal by water spray in the model containment THAI[J]. Journal of Aerosol Science, 2018, 120: 62-81. doi: 10.1016/j.jaerosci.2018.03.005
    [7] SHARMA A K, LIANG H, XU R C, et al. Radioactive aerosol control and decontamination in the decommissioning of the fukushima daiichi nuclear power station[J]. Nuclear Technology, 2023, 209(12): 2030-2043. doi: 10.1080/00295450.2023.2186675
    [8] LIANG H, ERKAN N, SOLANS V, et al. Numerical simulation and validation of aerosol particle removal by water spray droplets with OpenFOAM during the fukushima daiichi fuel debris retrieval[J]. Frontiers in Energy Research, 2020, 8: 102. doi: 10.3389/fenrg.2020.00102
    [9] LIANG H, ERKAN N, WANG K, et al. Numerical simulation of aerosol generation by cutting fuel debris and aerosol removal by spray droplets during Fukushima decommissioning[J]. Progress in Nuclear Energy, 2023, 160: 104667. doi: 10.1016/j.pnucene.2023.104667
    [10] PARK S H, JUNG C H, JUNG K R, et al. Wet scrubbing of polydisperse aerosols by freely falling droplets[J]. Journal of Aerosol Science, 2005, 36(12): 1444-1458. doi: 10.1016/j.jaerosci.2005.03.012
    [11] POWERS D A, BURSON S B. A simplified model of aerosol removal by containment sprays:NUREG/CR-5966[R]. Washington: Nuclear Regulatory Commission, 1993, doi: 10.2172/6503368.
    [12] BRUNEL M, SHEN H H. Design of ILIDS configurations for droplet characterization[J]. Particuology, 2013, 11(2): 148-157. doi: 10.1016/j.partic.2012.06.014
    [13] RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. 3rd ed. Cham: Springer, 2018: 669.
    [14] LIANG H, ZHOU Q, ERKAN N, et al. Improvement of aerosol spray scavenging efficiency with water mist[J]. Journal of Aerosol Science, 2021, 153: 105697. doi: 10.1016/j.jaerosci.2020.105697
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  81
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-27
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回