Development Progress of CorTAF: A Three-Dimensional Cross-Scale Multi-Physics Coupling Analysis Code for Nuclear Reactor Core
-
摘要: 核反应堆堆芯作为核动力系统关键设备,其几何结构复杂,且不同物理场间存在强烈耦合作用。堆芯高精度精细化热工水力及多物理场耦合分析技术是先进核动力系统设计与安全分析的重要保证,西安交通大学核反应堆热工水力研究室(NuTHeL)构建了全堆芯核-热-流-沉积多物理场耦合分析模型,基于开源计算流体动力学(CFD)平台自主开发了通道级核反应堆堆芯三维跨尺度多物理场耦合分析程序CorTAF系列,实现了基于CFD方法的全压力容器内全尺寸多物理场的计算分析与预测,并开展了基于国际基准题的确认和验证(V&V)工作。近年来,研究团队基于上述研究基础不断开发与完善程序的数学物理模型,目前CorTAF程序已经具备了面向多种堆型(压水堆、铅铋堆、钠冷快堆等)、涵盖多种物理场(中子物理、热工水力、腐蚀沉积等)、串联多个系统(堆芯、上腔室、下腔室等)的跨尺度耦合计算能力。本文以压水堆CorTAF程序为例,介绍了其主要功能,总结回顾了相关工作,并提出了未来工作展望。Abstract: The reactor core is a critical component of nuclear power systems with a complex geometric structure, and it experiences strong coupling effects between various physical fields. High-precision thermal-hydraulic and multi-physics coupling analysis of the core is essential for ensuring the design and safety analysis of advanced nuclear power systems. The Nuclear Reactor Thermal-Hydraulic Laboratory (NuTHeL) at Xi'an Jiaotong University has built a core-heat-flow-deposition multi-physics coupling analysis model, and has independently developed the CorTAF Three-Dimensional Cross-Scale Multi-Physics Coupling Analysis Code for Nuclear Reactor Core, which allows CFD-based multi-physics calculations and predictions for the entire pressure vessel. Validation and verification work has also been conducted based on international benchmark problems. In recent years, the research team has continually developed and refined the mathematical and physical models of the code. Currently, the CorTAF code supports cross-scale coupling calculations for multiple reactor types (PWR, LFR, SFR), physical fields (Neutronics, Thermal hydraulic, Deposition), and system structures (Core, Lower plenum, Upper plenum). This paper reviews the development process of the CorTAF series codes, presents their main functions and applications in PWR calculation, summarizes the current computational results, and discusses the future direction of the program's development.
-
表 1 燃料组件数值模拟计算
Table 1. Numerical Simulation of Fuel Assemblies
物理量 COBRA程序
计算值CorTAF程序
计算值相对误差/% 冷却剂平均温度/K 585.85 585.20 0.11 冷却剂出口温度/K 600.70 599.30 0.23 包壳平均温度/K 605.44 603.60 0.30 包壳最高温度/K 622.34 620.07 0.36 燃料平均温度/K 862.40 871.42 1.05 燃料最高温度/K 1024.12 1033.33 0.90 -
[1] KULESZA J A, FRANCESCHINI F, EVANS T M, et al. Overview of the consortium for the advanced simulation of light water reactors (CASL)[J]. EPJ Web of Conferences, 2016, 106: 03002. doi: 10.1051/epjconf/201610603002 [2] SZILARD R, KOTHE D, TURINSKY P. The consortium for advanced simulation of light water reactors[C]//Enlarged Halden Programme Group Meeting. Sandefjord, Norway: INL, 2011. [3] LEFEBVRE R A, LANGLEY B R, MILLER L P, et al. NEAMS workbench status and capabilities: ORNL/TM-2019/1314[R]. Tennessee: Oak Ridge National Laboratory (ORNL), 2019. [4] CHANARON B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001 [5] CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013 [6] CHAULIAC C, ARAGONÉS J M, BESTION D, et al. NURESIM – a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426. doi: 10.1016/j.nucengdes.2010.09.040 [7] 曹良志,邓力,杨波,等. CAP1400数值反应堆系统关键技术研究及示范应用[J]. 原子能科学技术,2022, 56(2): 213-225. [8] 杨文,胡长军,刘天才,等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术,2019, 53(10): 1821-1832. [9] 刘东,李庆,卢宗健,等. “华龙一号”设计分析软件包NESTOR的研发与应用[J]. 中国核电,2017, 10(4): 532-536. [10] 刘凯,王明军,田文喜,等. 数值反应堆堆芯通道级三维热工水力程序CorTAF开发及初步验证[J]. 原子能科学技术,2022, 56(2): 261-270. [11] DONG Z Y, LIU K, WANG M J, et al. Development of Two-Dimensional heat conduction model in subchannel code based on OpenFOAM[C]. //Proceedings of the 2024 31st International Conference on Nuclear Engineering. Prague, Czech Republic: Nuclear Engineering Division, 2024. [12] DONG Z Y, LIU K, QIU H R, et al. Preliminary implementation of high-resolution multi-scale coupling calculations for the entire pressure vessel based on OpenFOAM[J]. Applied Thermal Engineering, 2025, 259: 124911. doi: 10.1016/j.applthermaleng.2024.124911 [13] LIU K, WANG M J, TIAN W X, et al. CorTAF: a nuclear reactor core three-dimensional thermal-hydraulic characteristics analysis code based on OpenFOAM[J]. Nuclear Engineering and Design, 2023, 405: 112209. doi: 10.1016/j.nucengdes.2023.112209 [14] LIU X T, LIU K, WANG M J, et al. Three-Dimensional thermal-hydraulic characteristics analysis of plate-type fuel reactor core based on OpenFOAM[J]. Progress in Nuclear Energy, 2023, 160: 104712. doi: 10.1016/j.pnucene.2023.104712 [15] QIU H R, YU J C, WANG M J, et al. Application of BPNN algorithm in thermal-hydraulic analysis of unwrapped LFR core[J]. International Journal of Thermal Sciences, 2024, 203: 109176. doi: 10.1016/j.ijthermalsci.2024.109176 [16] YU J C, LIU K, QIU H R, et al. Thermal-hydraulic analysis of a full-scale lead-bismuth cooled fast reactor core considering inter-wrapper flow[J]. Progress in Nuclear Energy, 2024, 175: 105331. doi: 10.1016/j.pnucene.2024.105331 [17] YU J C, LIU K, QIU H R, et al. Numerical analysis of thermal-hydraulic characteristics of the whole LFR core under blockage conditions[J]. International Journal of Thermal Sciences, 2025, 208: 109435. doi: 10.1016/j.ijthermalsci.2024.109435 [18] DONG Z Y, LIU K, WANG M J, et al. The development of nuclear reactor three-dimensional neutronic thermal–hydraulic coupling code: CorTAF-2.0[J]. Nuclear Engineering and Design, 2023, 415: 112689. doi: 10.1016/j.nucengdes.2023.112689 [19] DONG Z Y, LIU K, WANG M J, et al. Study on the deposition migration and heat transfer characteristics in the reactor core based on OpenFOAM[J]. Applied Thermal Engineering, 2023, 230: 120858. doi: 10.1016/j.applthermaleng.2023.120858 [20] GE J, ZHANG D L, TIAN W X, et al. Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code[J]. Progress in Nuclear Energy, 2015, 85: 366-374. doi: 10.1016/j.pnucene.2015.07.012 [21] HUO Y C, YU H, WANG M J, et al. Development and application of TaSNAM 2.0 for advanced pressurized water reactor[J]. Annals of Nuclear Energy, 2022, 166: 108801. doi: 10.1016/j.anucene.2021.108801 -