高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应堆主屏蔽三维注量率合成精度影响因素分析

侯煜楠 张斌

侯煜楠, 张斌. 反应堆主屏蔽三维注量率合成精度影响因素分析[J]. 核动力工程, 2025, 46(S1): 166-180. doi: 10.13832/j.jnpe.2025.S1.0166
引用本文: 侯煜楠, 张斌. 反应堆主屏蔽三维注量率合成精度影响因素分析[J]. 核动力工程, 2025, 46(S1): 166-180. doi: 10.13832/j.jnpe.2025.S1.0166
Hou Yunan, Zhang Bin. Analysis of Factors Influencing the Accuracy of 3-D Flux Synthesis in Nuclear Reactor Primary Shielding[J]. Nuclear Power Engineering, 2025, 46(S1): 166-180. doi: 10.13832/j.jnpe.2025.S1.0166
Citation: Hou Yunan, Zhang Bin. Analysis of Factors Influencing the Accuracy of 3-D Flux Synthesis in Nuclear Reactor Primary Shielding[J]. Nuclear Power Engineering, 2025, 46(S1): 166-180. doi: 10.13832/j.jnpe.2025.S1.0166

反应堆主屏蔽三维注量率合成精度影响因素分析

doi: 10.13832/j.jnpe.2025.S1.0166
详细信息
    作者简介:

    侯煜楠(2002—),女,硕士研究生,现主要从事反应堆辐射与屏蔽方面的研究,E-mail: 18234121131@163.com

    通讯作者:

    张 斌,E-mail: zhangbin@ncepu.edu.cn

  • 中图分类号: TL328

Analysis of Factors Influencing the Accuracy of 3-D Flux Synthesis in Nuclear Reactor Primary Shielding

  • 摘要: 离散纵标(SN)方法是计算反应堆压力容器(RPV)内快中子注量率的主要方法之一。基于二维加一维SN的三维注量率合成方法(简称合成方法),相比直接三维离散纵标方法(简称三维计算法)具有更高的计算效率,但源强和几何的近似处理会影响合成方法的计算精度。为深入分析源强和几何近似处理对合成方法的影响,本文建立了适用于合成方法的基准模型,并以基准模型合成与三维计算所得快中子注量率的相对误差为参考,分别分析源强和几何因素对合成方法的影响。源强分析中,在基准模型的基础上分别引入非均匀的径向、轴向和方位角功率分布,分析合成计算与三维计算所得快中子注量率相对误差的变化;在几何分析中,将基准模型的堆芯结构分别改变为正方形堆芯和阶梯状堆芯,依次分析合成计算与三维计算所得快中子注量率相对误差的变化。结果表明,径向和轴向功率分布的最大相对误差均在1.5% 以内,而方位角功率分布使堆腔处的相对误差达到3.5%;正方形和阶梯状堆芯结构分别导致堆腔处相对误差达20%和22%。在典型压水堆HBR-2计算中,合成方法与三维计算法的快中子注量率在反应堆堆腔处的相对误差达11.65%,这表明合成方法对反应堆堆腔区域的计算精度仍需要进一步提高。

     

  • 图  1  计算流程图

    Figure  1.  Flowchart of the Calculation Process

    图  2  基准模型三维几何结构

    Figure  2.  3-D Geometry of the Benchmark Model

    图  3  基准模型二维几何结构

    Figure  3.  2-D Geometry of the Benchmark Model

    图  4  基准模型快中子注量率径向分布(中平面,0°方位角)

    Figure  4.  Radial Profile of Fast Neutron Flux in the Benchmark Model (Midplane, 0° Azimuth)

    图  5  基准模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  5.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Benchmark Model (0° Azimuth)

    图  6  基准模型RPV内壁快中子注量率圆周方向分布

    Figure  6.  Circumferential Profile of Fast Neutron Flux on the RPV Inner Wall in the Benchmark Model

    图  7  径向功率分布几何模型

    Figure  7.  Geometric Model of Radial Power Distribution

    图  8  径向功率分布模型快中子注量率径向分布(中平面,0°方位角)

    Figure  8.  Radial Profile of Fast Neutron Flux in the Radial Power Distribution Model (Midplane, 0° Azimuth)

    图  9  径向功率分布模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  9.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Radial Power Distribution Model (0° Azimuth)

    图  10  径向功率分布模型RPV内壁快中子注量率圆周方向分布

    Figure  10.  Circumferential Profile of Fast Neutron Flux on the RPV Inner Wall in the Radial Power Distribution Model

    图  11  轴向功率分布几何模型

    图例同上图3

    Figure  11.  Geometric Model of Axial Power Distribution

    图  12  轴向功率分布模型快中子注量率径向分布(中平面,0°方位角)

    Figure  12.  Radial Profile of Fast Neutron Flux in the Axial Power Distribution Model (Midplane, 0° Azimuth)

    图  13  轴向功率分布模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  13.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Axial Power Distribution Model (0° Azimuth)

    图  14  轴向功率分布模型RPV内壁快中子注量率方位角分布

    Figure  14.  Azimuthal Profile of Fast Neutron Flux on the RPV Inner Wall in the Axial Power Distribution Model

    图  15  方位角功率分布几何模型

    Figure  15.  Geometric Model of Azimuthal Power Distribution

    图  16  方位角功率分布模型的快中子注量率径向分布(中平面,0°方位角)

    Figure  16.  Radial Profile of Fast Neutron Flux in the Azimuthal Power Distribution Model (Midplane, 0° Azimuth)

    图  17  方位角功率分布模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  17.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Azimuthal Power Distribution Model (0° Azimuth)

    图  18  方位角功率分布模型RPV内壁快中子注量率圆周方向分布

    Figure  18.  Circumferential Profile of Fast Neutron Flux on the RPV Inner Wall in the Azimuthal Power Distribution Model

    图  19  正方形堆芯三维几何结构

    图例同上图2

    Figure  19.  3-D Geometry of the Square Core Model

    图  20  正方形堆芯二维几何结构

    Figure  20.  2-D Geometry of the Square Core Model

    图  21  正方形堆芯模型快中子注量率径向分布

    Figure  21.  Radial Profile of Fast Neutron Flux in the Square Core Model

    图  22  正方形堆芯模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  22.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Square Core Model (0° Azimuth)

    图  23  正方形堆芯模型RPV内壁快中子注量率圆周方向分布

    Figure  23.  Circumferential Profile of Fast Neutron Flux on the RPV Inner Wall in the Square Core Model

    图  24  阶梯状堆芯三维几何结构

    图例同上图2

    Figure  24.  3-D Geometry of the Stepped Core Model

    图  25  阶梯状堆芯二维几何结构

    Figure  25.  2-D Geometry of the Stepped Core Model

    图  26  阶梯状堆芯模型快中子注量率径向分布

    Figure  26.  Radial Profile of Fast Neutron Flux in the Stepped Core Model

    图  27  阶梯状堆芯模型RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  27.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in the Stepped Core Model (0° Azimuth)

    图  28  阶梯状堆芯模型RPV内壁快中子注量率圆周方向分布

    Figure  28.  Circumferential Profile of Fast Neutron Flux on the RPV Inner Wall in the Stepped Core Model

    图  29  HBR-2三维几何结构

    Figure  29.  3-D Geometry of the HBR-2

    图  30  HBR-2二维几何结构

    Figure  30.  2-D Geometry of the HBR-2

    图  31  HBR-2快中子注量率径向分布(中平面,0°方位角)

    Figure  31.  Radial Profile of Fast Neutron Flux in HBR-2 (Midplane, 0° Azimuth)

    图  32  HBR-2 RPV内壁快中子注量率轴向分布(0°方位角)

    Figure  32.  Axial Profile of Fast Neutron Flux on the RPV Inner Wall in HBR-2 (0° Azimuth)

    图  33  HBR-2辐照监督管处快中子注量率圆周方向分布(中平面)

    Figure  33.  Circumferential Profile of Fast Neutron Flux at the Surveillance Capsule in HBR-2 (Midplane)

    图  34  关键点中子能谱

    Figure  34.  Neutron Spectrum of the Key Point

    表  1  径向功率分布

    Table  1.   Radial Power Distribution

    组件编号12345678
    组件相对功率1.0071.1691.0191.2561.0080.9511.0950.444
    下载: 导出CSV

    表  2  轴向功率分布

    Table  2.   Axial Power Distribution

    组件编号123456
    组件相对功率0.781.091.131.081.110.81
    下载: 导出CSV

    表  3  方位角功率分布

    Table  3.   Azimuth Power Distribution

    组件编号123456
    组件相对功率1.21.10.80.850.91.15
    下载: 导出CSV
  • [1] CAREW J F, HU K, ARONSON A, et al. PWR and BWR pressure vessel fluence calculation benchmark problems and solutions: NUREG/CR-6115[R]. Washington: Division of Engineering Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2001.
    [2] U. S. Nuclear Regulatory Commission. Radiation embrittlement of reactor vessel materials: Regulatory Guide 1.99[R]. Rockville: U. S. Nuclear Regulatory Commission, 1988.
    [3] PETROVIC B G, HAGHIGHAT A. Effects of SN method numerics on pressure vessel neutron fluence calculations[J]. Nuclear Science and Engineering, 1996, 122(2): 167-193. doi: 10.13182/NSE96-3
    [4] BOEHMER B, BORODKIN G, KONHEISER J, et al. Testing of neutron data libraries in application to reactor pressure vessel dosimetry[J]. Journal of Nuclear Science and Technology, 2002, 39(S2): 1006-1009.
    [5] KULESZA J A. Comparison of three-dimensional flux synthesis and full three-dimensional discrete ordinates methods for the calculation of reactor cavity bioshield heat generation rates[J]. Nuclear Technology, 2011, 175(1): 228-237. doi: 10.13182/NT11-A12294
    [6] LIM M J, MAENG Y J, FERO A H, et al. Comparison of analysis results between 2D/1D synthesis and RAPTOR-M3G in the Korea standard nuclear plant (KSNP)[J]. EPJ Web of Conferences, 2016, 106: 03001. doi: 10.1051/epjconf/201610603001
    [7] 夏春梅,梅其良,丁谦学,等. DORT程序进行RPV中子注量率计算的可靠性验证[J]. 核科学与工程,2016, 36(3): 329-334. doi: 10.3969/j.issn.0258-0918.2016.03.005
    [8] CHEN J, ALPAN F A, FISCHER G A, et al. Ex-vessel neutron dosimetry analysis for Westinghouse 4-Loop XL pressurized water reactor plant using 3D parallel discrete ordinates code RAPTOR-M3G[J]. Journal of ASTM International, 2012, 9(4): 1-11.
    [9] U. S. Nuclear Regulatory Commission. Calculational and dosimetry methods for determining pressure vessel neutron fluence: Regulatory Guide 1.190[R]. Washington: U. S. Nuclear Regulatory Commission, 2001.
    [10] KIM D H, GIL C S, LEE Y O. Validation of an ENDF/B-VII. 0-based neutron and photon shielding library in MATXS-format[J]. Journal of the Korean Physical Society, 2011, 59(2): 1199-1202.
    [11] 张平逊,张斌,陈义学. 核反应堆屏蔽计算堆芯中子源强生成方法研究[J]. 核技术,2023, 46(5): 056003.
    [12] ORSI R. BOT3P-Bologna transport analysis pre-post-processors version 3.0[J]. Nuclear Science and Engineering, 2004, 146(2): 248-255. doi: 10.13182/NSE04-A2408
    [13] RHOADES W A, CHILDS R L. The DORT two-dimensional discrete ordinates transport code[J]. Nuclear Science and Engineering, 1988, 99(1): 88-89. doi: 10.13182/NSE88-A23547
    [14] MACFARLANE R E. TRANSX 2: a code for interfacing MATXS cross-section libraries to nuclear transport codes: LA-12312-MS[R]. Los Alamos National Laboratory, 1992.
    [15] Nuclear Energy Agency. Prediction of neutron embrittlement in the reactor pressure vessel: VENUS-1 and VENUS-3 benchmarks[R]. Paris: Organisation for Economic Co-Operation and Development, 2000: 239.
    [16] RHOADES W A, SIMPSON D B. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3): ORNL/TM-13221[R]. Oak Ridge: Oak Ridge National Laboratory, 1997.
    [17] REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark: NUREG/CR-6453[R]. Washington: US Nuclear Regulatory Commission, 1998.
    [18] ZHANG L, ZHANG B, LIU C, et al. Calculation of the C5G7 3-D extension benchmark by ARES transport code[J]. Nuclear Engineering and Design, 2017, 318: 231-238. doi: 10.1016/j.nucengdes.2017.04.011
  • 加载中
图(34) / 表(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-31
  • 修回日期:  2025-03-30
  • 刊出日期:  2025-07-09

目录

    /

    返回文章
    返回