Development and Verification of Doppler Broadening Module in Nuclear Data Processing Code
-
摘要: 为了满足核反应堆中多种不同工况数值模拟的需求,需要提供不同温度点下的核反应截面数据,但评价核数据库中给出的截面数据均为0 K下的核反应截面。因此,为了满足堆芯物理数值模拟计算的需求,需要针对评价核数据库中给出的评价核数据进行多普勒展宽处理,获得不同温度点的连续能量点截面。本文通过采用Kernel Broadening精确多普勒展宽方法,完成多普勒展宽计算方法的理论推导和程序开发。基于CENDL-3.2评价核数据库,分别采用本文开发的doppler_broad模块和NJOY2016程序中的BROADR模块对不同温度点下的展宽截面进行了对比验证,同时,针对多普勒展宽计算过程中部分收敛参数选取的合理性进行了计算分析。数值结果表明,对于293.6 K、600 K、900 K和108 K四个温度点,本文计算结果与NJOY2016程序计算结果吻合较好;对于判断相邻展宽能量点限值参数NMAX,其取值对展宽截面的影响较大,不同取值计算得到的展宽截面最大相对偏差为1.091%。
-
关键词:
- 核数据处理 /
- 多普勒展宽 /
- Kernel Broadening方法
Abstract: In order to meet the numerical simulation of various operating conditions in nuclear reactors, it is necessary to provide cross-section data at different temperature. However, the cross sections provided in the evaluated nuclear data library are the data at 0 K. Therefore, in order to meet the needs of core physics numerical simulation calculations, it is necessary to perform Doppler broadening processing based on the evaluated nuclear data in the evaluated nuclear data library to obtain continuous energy pointwise cross sections at different temperatures. Through the Kernel Broadening accurate Doppler broadening calculation method, the theoretical derivation and code development of the Doppler broadening calculation method have been completed. Based on the CENDL-3.2 evaluated nuclear data library, the broadening cross sections at different temperatures are calculated based on the doppler_broad module developed in this paper and the BROADR module in the NJOY2016, respectively, and a computational analysis is performed to verify the rationality of some convergence parameters in the Doppler broadening calculation process. The numerical results indicate that for the four temperature points of 293.6 K, 600 K, 900 K and 108 K, the calculation results in this paper are in good agreement with the NJOY2016 calculation results. The value of the NMAX parameter, which determines the limit of adjacent broadening energy points, has a significant impact on the broadening cross sections. The maximum relative deviation of the broadening cross sections for different values is 1.091%.-
Key words:
- Nuclear data processing /
- Doppler broadening /
- Kernel Broadening method
-
表 1 NJOY2016程序内置展宽参数
Table 1. Built-in Broadening Parameters in NJOY2016
展宽参数 内置参数值 NMAX 10 STEP 2.01 NSTACK 12 -
[1] 李松阳,王侃,余纲林. 中子核截面在线多普勒展宽方法研究[J]. 原子能科学技术,2013, 47(3): 337-342. doi: 10.7538/yzk.2013.47.03.0337 [2] Cullen, D.E., Weisbin, C.R., 1976. Exact Doppler broadening of tabulated cross sections. Nucl. Sci. Eng. 60 (3), 199–229. [3] 李松阳. 在线多普勒展宽与核截面处理方法研究[D]. 北京: 清华大学,2012. [4] TRUMBULL H T. Treatment of nuclear data for transport problems containing detailed temperature distributions[J]. Nuclear Technology, 2006, 156(1): 75-86. doi: 10.13182/NT156-75 [5] CONLIN J L, JI W, LEE J C, et al. Pseudo material construct for coupled neutronic-thermal-hydraulic analysis of VHTGR[J]. Transactions of the American Nuclear Society, 2005, 92(1): 225-227. [6] YESILYURT G. Advanced Monte Carlo methods for analysis of very high temperature reactors: On-the-Fly Doppler broadening and Deterministic/Monte Carlo methods[D]. Ann Arbor: University of Michigan, 2009. [7] 李松阳, 王侃, 余纲林. 中子截面Doppler展宽算法及并行计算方法[J]. 清华大学学报(自然科学版), 2012, 52(04): 523-526. [8] MCCARTNEY A, CONLIN J L, REHN D. NJOY21: a successor to the NJOY nuclear data processing system[J]. Transactions of the American Nuclear Society, 2016, 114(1): 500-503. [9] Dunn, M.E., Greene, N.M., 2002. AMPX-2000: a cross-section processing system for generating nuclear data for criticality safety applications. Trans. Am. Nucl. Soc. 86, 118–119. [10] LEE C, YANG W S. MC2-3: multigroup cross section generation code for fast reactor analysis[J]. Nuclear Science and Engineering, 2017, 187(3): 268-290. doi: 10.1080/00295639.2017.1320893 [11] COSTE-DELCLAUX M, JOUANNE C, MOUNIER C. Current status of the verification and processing system GALILÉE-1 for Evaluated Data[J]. EPJ Web of Conferences, 2023, 284: 14007. doi: 10.1051/epjconf/202328414007 [12] CULLEN D E. PREPRO 2021: ENDF/B Preprocessing codes[R]. Vienna: IAEA, 2021. [13] Kenichi Tada, Yasunobu Nagaya, Satoshi Kunieda, et al. Development and verification of a new nuclear data processing system FRENDY[J]. Journal of Nuclear Science and Techology, 54, 806-817. [14] Tiejun Zu, Jialong Xu, Yongqiang Tang, et al. NECP-Atlas: A new nuclear data processing code[J]. Annals of Nuclear Energy, 2019, 123: 153-161. [15] 刘萍, 吴小飞, 李松阳, 等. 群常数制作软件Ruler研发[J]. 原子能科学技术, 2018, 52(07): 1153-1159. [16] 余健开, 李松阳, 王侃, 等. 反应堆用核截面处理程序RXSP的研发与验证[J]. 核动力工程,2013, 34(S1): 10-13. [17] Kui Hu, Xubo Ma, Xuan Ma, et al. Development and verification of a new nuclear data processing code AXSP[J]. Frontiers in Energy Research. 10, 2022. -