Advance Search
Volume 35 Issue S2
Feb.  2025
Turn off MathJax
Article Contents
PenG Xingjie, YinG Dongchuan, Li Qing, Wang Kan. Application of Regularized Radial Basis Function Neural Network in Core Axial Power Distribution Reconstruction[J]. Nuclear Power Engineering, 2014, 35(S2): 12-15. doi: 10.13832/j.jnpe.2014.S2.0012
Citation: PenG Xingjie, YinG Dongchuan, Li Qing, Wang Kan. Application of Regularized Radial Basis Function Neural Network in Core Axial Power Distribution Reconstruction[J]. Nuclear Power Engineering, 2014, 35(S2): 12-15. doi: 10.13832/j.jnpe.2014.S2.0012

Application of Regularized Radial Basis Function Neural Network in Core Axial Power Distribution Reconstruction

doi: 10.13832/j.jnpe.2014.S2.0012
  • Received Date: 2014-11-06
  • Rev Recd Date: 2015-01-12
  • Available Online: 2025-02-15
  • The core axial power shape reconstruction method based on the regularized radial basis function neural network(r RBFNN) is proposed, and the axial power distribution can be reconstructed from 6-segment ex-core detector signals. The 7740 axial power distributions of ACP-100 modular reactor and the corresponding simulated ex-core detector readings are used to verify the r RBFNN reconstruction method. The results show that r RBFNN reconstruction method can reconstruct the core axial power distribution accurately, and this method is robust enough to deal with the inherent ill-posedness of the power distribution reconstruction problem.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return