Citation: | Zhang Teng, Zhang Bo, Wang Yu, Li Pengyuan, He Zujuan, Wei Haihong, Sun Zhenchao, Hou Binglin, Kang Daoan. Fabrication Design, Qualification and Key Technologies of ITER Gravity Supports[J]. Nuclear Power Engineering, 2021, 42(4): 265-269. doi: 10.13832/j.jnpe.2021.04.0265 |
[1] |
LEE P Y, HOU B L, JIAN G D, et al. Redesign of gravity support system for ITER construction[J]. Fusion Engineering and Design, 2010, 85(1): 33-38. doi: 10.1016/j.fusengdes.2009.05.002
|
[2] |
HOU B L, LEE P Y, GALLIX R, et al. The conceptual alternative design for ITER magnet gravity support using clamp bolt[J]. Fusion Engineering and Design, 2010, 85(10-12): 1919-1923. doi: 10.1016/j.fusengdes.2010.06.024
|
[3] |
FU Y K, GALLIX R, JONG C, et al. Structural assessment of the ITER magnet system gravity supports[J]. Fusion Engineering and Design, 2011, 86(6-8): 1389-1392. doi: 10.1016/j.fusengdes.2011.01.123
|
[4] |
HOU B L. Final report - GS Task 7: assembly mechanical qualification: NQ5JH8[R]. FRA: ITER, 2013.
|
[5] |
DAVIS J W. ITER Material properties handbook: S74MA2[R]. FRA: ITER, 2009
|
[6] |
LIM B S. Thermal, electrical and mechanical properties of materials at cryogenic temperatures: 223BTL[R]. FRA: ITER, 2005
|
[7] |
GAUTHIER F. Thermal analyses of cooling pipe for the magnet supports: 454WL4[R]. FRA: ITER, 2011
|
[8] |
SUN Z C, LI P T, WEI H H, et al. Study on the heat exchange efficiency of ITER GS thermal anchor[J]. Fusion Engineering and Design, 2018(136): 96-99. doi: 10.1016/j.fusengdes.2017.12.041
|