Advance Search
Volume 43 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Zhao Bo, Li Quan, Li Yuanming, Huang Yongzhong, Ma Qiang, Su Min, Liu Zhenhai, Qi Feipeng, Ma Chao, Chen Hao. Research on Analysis for Performance and Optimization of Prismatic Dispersed Microencapsulated Fuel in Gas-Cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(2): 89-95. doi: 10.13832/j.jnpe.2022.02.0089
Citation: Zhao Bo, Li Quan, Li Yuanming, Huang Yongzhong, Ma Qiang, Su Min, Liu Zhenhai, Qi Feipeng, Ma Chao, Chen Hao. Research on Analysis for Performance and Optimization of Prismatic Dispersed Microencapsulated Fuel in Gas-Cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(2): 89-95. doi: 10.13832/j.jnpe.2022.02.0089

Research on Analysis for Performance and Optimization of Prismatic Dispersed Microencapsulated Fuel in Gas-Cooled Reactor

doi: 10.13832/j.jnpe.2022.02.0089
  • Received Date: 2021-01-12
  • Rev Recd Date: 2021-06-15
  • Publish Date: 2022-04-02
  • Prismatic dispersed microencapsulated fuel is a particle-reinforced composite fuel which is formed by TRISO fuel particles dispersed in metal or ceramic matrix. It has good structural stability, fission product inclusion capacity and irradiation stability, and it is one of the promising fuels in high temperature gas-cooled reactor. A prismatic dispersed microencapsulated fuel with TRISO particles dispersed in SiC matric was proposed in this paper. Based on the finite element analysis software COMSOL, the 3D thermal-fluid-solid coupling analysis model of the fuel element is established, and the performance analysis and optimization design of the fuel element are preliminarily realized. The results show that the maximum temperature of the prismatic dispersed microencapsulated fuel element is located on the outside of the fuel element, the peak stress is on the wall of the coolant channel, and the thermal stress of the fuel element is the lowest when the edge-distance ratio is 0.76 to 0.84 and the hole-distance ratio is 0.68 to 0.75. The performance analysis method and research conclusions of the prismatic dispersed microencapsulated fuel established in this paper can provide guidance and reference for the subsequent design of this type of gas-cooled reactor fuel element.

     

  • loading
  • [1]
    KING J C, EL-GENK M S. Submersion-subcritical safe space (S4) reactor[J]. Nuclear Engineering and Design, 2006, 236(17): 1759-1777. doi: 10.1016/j.nucengdes.2005.12.010
    [2]
    BENDER M, CARLSMITH R S, DELENE J G, et al. Gas-cooled fast reactor concepts: ORNL-3642[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 1964.
    [3]
    NISHIHARA T, YAN X, TACHIBANA Y, et al. Excellent feature of Japanese HTGR technologies: JAEA-Technology 2018-004[R]. Japan Atomic Energy Agency, 2018.
    [4]
    SHAMANIN I V, GRACHEV V M, CHERTKOV Y B, et al. Neutronic properties of high-temperature gas-cooled reactors with thorium fuel[J]. Annals of Nuclear Energy, 2018(113): 286-293. doi: 10.1016/j.anucene.2017.11.045
    [5]
    HANDWERK C S, DRISCOLL M J, HEJZLAR P. Optimized core design of a supercritical carbon dioxide-cooled fast reactor[J]. Nuclear Technology, 2008, 164(3): 320-336. doi: 10.13182/NT08-A4030
    [6]
    ATTOM A M, WANG J C, HUANG J, et al. Neutronic analysis of thorium S& B fuel blocks with different driver fuels in advanced Block-type HTRs[J]. Annals of Nuclear Energy, 2020(136): 107041. doi: 10.1016/j.anucene.2019.107041
    [7]
    辛勇,李垣明,唐昌兵,等. 金属基弥散微封装燃料中TRISO燃料颗粒的尺寸优化设计[J]. 核动力工程,2019, 40(2): 176-179.
    [8]
    李垣明,唐昌兵,余红星,等. 锆基弥散微封装燃料在稳态运行条件下的失效机理研究[J]. 核动力工程,2019, 40(1): 156-161.
    [9]
    Idaho National Engineering and Environmental Laboratory. A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[Z]. Idaho: Idaho National Engineering and Environmental Laboratory, 2003.
    [10]
    POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82. doi: 10.1016/j.jnucmat.2010.07.030
    [11]
    SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
    [12]
    LUCUTA P G, MATZKE H J, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7
    [13]
    MAXWELL J C. A Treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 1873.
    [14]
    KERNER E H. The elastic and thermo-elastic properties of composite media[J]. Proceedings of the Physical Society, 1956, 69(8): 808-813. doi: 10.1088/0370-1301/69/8/305
    [15]
    黄克智, 黄永刚. 固体本构关系[M]. 北京: 清华大学出版社, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (622) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return