Citation: | Gu Chen, He Yanan, Deng Chaoqun, Wu Yingwei, Zhang Jing, Tian Wenxi, Su Guanghui, Qiu Suizheng. Temperature Field Calculation of Spherical Fuel Element Based on Online Coupling[J]. Nuclear Power Engineering, 2023, 44(1): 79-88. doi: 10.13832/j.jnpe.2023.01.0079 |
[1] |
张作义,吴宗鑫,王大中,等. 我国高温气冷堆发展战略研究[J]. 中国工程科学,2019, 21(1): 12-19.
|
[2] |
钱立波,余红星,孙玉发,等. TRISO燃料颗粒等效导热系数理论模型研究[J]. 核动力工程,2020, 41(6): 69-74. doi: 10.13832/j.jnpe.2020.06.0069
|
[3] |
李文杰,余红星,肖忠,等. 高体积份额下包覆颗粒弥散燃料等效热学模型[J]. 核动力工程,2021, 42(4): 96-100. doi: 10.13832/j.jnpe.2021.04.0096
|
[4] |
PROGELHOF R C, THRONE J L, RUETSCH R R. Methods for predicting the thermal conductivity of composite systems: a review[J]. Polymer Engineering and Science, 1976, 16(9): 615-625. doi: 10.1002/pen.760160905
|
[5] |
钱立波,余红星,孙玉发,等. 固-固二元复合材料等效导热系数模型研究综述及评价[J]. 原子能科学技术,2020, 54(3): 409-420. doi: 10.7538/yzk.2019.youxian.0310
|
[6] |
FOLSOM C, XING C H, JENSEN C, et al. Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts[J]. Journal of Nuclear Materials, 2015, 458: 198-205. doi: 10.1016/j.jnucmat.2014.12.042
|
[7] |
李垣明,唐昌兵,余红星,等. 锆基弥散微封装燃料等效传热系数数值模拟研究[J]. 核动力工程,2018, 39(2): 76-79. doi: 10.13832/j.jnpe.2018.02.0076
|
[8] |
ZHANG C, WU Y W, LIU S C, et al. Multidimensional multiphysics modeling of TRISO particle fuel with SiC/ZrC coating using modified fission gas release model[J]. Annals of Nuclear Energy, 2020, 145: 107599. doi: 10.1016/j.anucene.2020.107599
|
[9] |
TOPTAN A, JIANG W, NOVASCONE S R, et al. Matrix graphite material models in pebbles and compacts for BISON: INL/EXT-21-64643[R]. Idaho Falls: Idaho National Laboratory, 2021.
|
[10] |
LUCUTA P G, MATZKE H, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7
|
[11] |
PETTI D, MARTIN P, PHÉLIP M, et al. Development of improved models and designs for coated-particle gas reactor fuels: INEEL/EXT-05-02615[R]. Bechtel BWXT, Idaho: Idaho National Engineering and Environmental Laboratory, 2004.
|
[12] |
HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543. doi: 10.1016/j.jnucmat.2013.07.070
|
[13] |
崔羿,丁淑蓉,赵云妹,等. 考虑晶界扩散和气泡联合的UO2燃料裂变气体模型[J]. 核动力工程,2012, 33(S2): 9-12.
|
[14] |
PROKSCH E, STRIGL A, NABIELEK H. Production of carbon monoxide during burn-up of UO2 kerneled HTR fuel particles[J]. Journal of Nuclear Materials, 1982, 107(2-3): 280-285. doi: 10.1016/0022-3115(82)90426-3
|
[15] |
ZHANG C, WANG Y Y, WU Y W, et al. Preliminary numerical investigation of TRISO-Matrix interface debonding characteristics in fully ceramic microencapsulated fuel[J]. Annals of Nuclear Energy, 2021, 159: 108338. doi: 10.1016/j.anucene.2021.108338
|
[16] |
陈平,李伟,李垣明,等. TRISO燃料颗粒三维多物理场耦合计算模型开发[J]. 核动力工程,2017, 38(5): 169-174. doi: 10.13832/j.jnpe.2017.05.0169
|
[17] |
张培源,严波. 多相固体的等效导热系数[J]. 重庆大学学报,1989, 12(6): 15-20.
|
[18] |
MCLAUGHLIN R. A study of the differential scheme for composite materials[J]. International Journal of Engineering Science, 1977, 15(4): 237-244. doi: 10.1016/0020-7225(77)90058-1
|
[19] |
ZHANG Z Y, DONG Y J, LI F, et al. The Shandong Shidao Bay 200 MWe High-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation[J]. Engineering, 2016, 2(1): 112-118
|