Advance Search
Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Lu Xifeng, Wang Xinjun, Ai Honglei, Lyu Yongbo, He Feng, Li Bingjin, Zhang Quan. Study on the Smoothness of the Flow Channel of Rapid Pressure Relief Pipeline in Severe Accident of HPR 1000[J]. Nuclear Power Engineering, 2023, 44(1): 134-140. doi: 10.13832/j.jnpe.2023.01.0134
Citation: Lu Xifeng, Wang Xinjun, Ai Honglei, Lyu Yongbo, He Feng, Li Bingjin, Zhang Quan. Study on the Smoothness of the Flow Channel of Rapid Pressure Relief Pipeline in Severe Accident of HPR 1000[J]. Nuclear Power Engineering, 2023, 44(1): 134-140. doi: 10.13832/j.jnpe.2023.01.0134

Study on the Smoothness of the Flow Channel of Rapid Pressure Relief Pipeline in Severe Accident of HPR 1000

doi: 10.13832/j.jnpe.2023.01.0134
  • Received Date: 2022-02-17
  • Rev Recd Date: 2022-09-15
  • Publish Date: 2023-02-15
  • Both pipelines and the equipment experience extreme high temperature and pressure in sever accident of the nuclear power plant. As the only way to relieve pressure in case of severe accident, it is very important to ensure the smoothness of the flow channel of rapid pressures relief pipeline. In this paper, the study on the smoothness of the flow channel of rapid pressure relief pipeline in severe accident of HPR 1000 is carried out. Heat transfer analysis is done for rapid pressure relief pipeline and pressurizer in severe accident. The temperature changes of pipeline and pressurizer are obtained. The deformation process of rapid pressure relief pipeline in severe accident is simulated by elastic analysis method. The relationship between temperature and deformation is obtained. The 3D model is established, and the material non-linearity is introduced. The simulation study on the position of spring support and damper of rapid pressure relief pipeline is carried out, and the status of spring support and damper of pipeline under severe accident is obtained. The influence of high temperature creep on pipeline integrity is analyzed for the case of temperature higher than 450℃. 10 positions with the largest deformation on the rapid pressures relief pipeline are selected to study the residual area of the pipeline section, and the minimum residual area ratio and the minimum flow area of the pipeline under severe accidents are obtained. The research results show that the flow channel of the rapid pressures relief pipeline can still ensure the smoothness under the severe accident of HPR 1000, and the rapid pressures relief pipeline of HPR 1000 can ensure that the reactor core will not melt.

     

  • loading
  • [1]
    国家核安全局. 核动力厂设计安全规定: HAF 102—2016[Z]. 2016: 17-18.
    [2]
    国家核安全局. 核电厂反应堆冷却剂系统及其有关系统: HAD 102/08—1989[Z]. 1989: 1071-1072.
    [3]
    黄雄,吕雪峰,李依霖,等. AP1000核电厂自动卸压系统功能分析[J]. 热力发电,2016, 45(5): 84-87,99. doi: 10.3969/j.issn.1002-3364.2016.05.014
    [4]
    叶道权. AP1000反应堆冷却剂系统(RCS)自动卸压设计分析[C]//中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第3册(核能动力分卷(下)). 贵阳: 中国核学会, 2011.
    [5]
    王小吉,武铃珺,吴清,等. 百万千瓦级压水堆严重事故卸压阀高温瞬态分析[J]. 核动力工程,2021, 42(3): 69-73. doi: 10.13832/j.jnpe.2021.03.0069
    [6]
    武铃珺,彭欢欢,许幼幼,等. 快速卸压阀延迟开启对严重事故进程的影响分析[J]. 科技视界,2021(10): 111-114. doi: 10.19694/j.cnki.issn2095-2457.2021.10.34
    [7]
    倪项斌. 核电阀门高温分析方法研究[J]. 通用机械,2020(S2): 56-58.
    [8]
    余煜哲,刘忠伟,邓英剑. 高温高压阀门阀体的可靠性分析与研究[J]. 邵阳学院学报:自然科学版,2020, 17(1): 50-57.
    [9]
    MIKHEYEV M. Fundamentals of heat transfer[M]. Moscow: Peace Publishers, 1956: 280-346.
    [10]
    AFCEN. Design and construction rules for mechanical components of nuclear installations: RCC-MRx 2012[Z]. 2013: RB21-RB23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (1914) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return