Citation: | Liu Yu, Huang Mengqi, Peng Changhong, Du Zhengyu. Research on Heat Pipe Reactor Startup Process based on Autonomous Operation[J]. Nuclear Power Engineering, 2023, 44(3): 144-151. doi: 10.13832/j.jnpe.2023.03.0144 |
[1] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
|
[2] |
RAMUHALLI P, CETINER S M. Concepts for autonomous operation of microreactors: ORNL/TM-2019/1305[R]. Oak Ridge: Oak Ridge National Laboratory, 2019.
|
[3] |
STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
|
[4] |
MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos: Los Alamos National Laboratory, 2015.
|
[5] |
MA Y G, TIAN C Q, YU H X, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904. doi: 10.1016/j.pnucene.2021.103904
|
[6] |
MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
|
[7] |
马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
|
[8] |
钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. doi: 10.13832/j.jnpe.2021.S2.0104
|
[9] |
郑龙生,田康生. 基于相对计算的雷达探测概率建模方法[J]. 空军雷达学院学报,2005, 19(4): 23-26.
|
[10] |
张洪. 大亚湾核电站堆芯功率分布测量及其处理[J]. 核科学与工程,1997, 17(1): 6-16.
|
[11] |
PAULLADA A, RAJI I D, BENDER E M, et al. Data and its (dis)contents: A survey of dataset development and use in machine learning research[J]. Patterns, 2021, 2(11): 100336. doi: 10.1016/j.patter.2021.100336
|
[12] |
BROWN G, WYATT J L, TIŇO P. Managing diversity in regression ensembles[J]. Journal of Machine Learning Research, 2005, 6: 1621-1650.
|
[13] |
ASH A, SHWARTZ M. R2: a useful measure of model performance when predicting a dichotomous outcome[J]. Statistics in Medicine, 1999, 18(4): 375-384. doi: 10.1002/(SICI)1097-0258(19990228)18:4<375::AID-SIM20>3.0.CO;2-J
|
[14] |
FRIEDMAN J H. On bias, variance, 0/1-loss, and the curse-of-dimensionality[J]. Data Mining and Knowledge Discovery, 1997, 1(1): 55-77. doi: 10.1023/A:1009778005914
|
[15] |
REN Y, ZHANG L, SUGANTHAN P N. Ensemble classification and regression—recent developments, applications and future directions[J]. IEEE Computational Intelligence Magazine, 2016, 11(1): 41-53. doi: 10.1109/MCI.2015.2471235
|
[16] |
SHAHHOSSEINI M, HU G P, PHAM H. Optimizing ensemble weights and hyperparameters of machine learning models for regression problems[J]. Machine Learning with Applications, 2022, 7: 100251.
|
[17] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 186-188.
|
[18] |
MENDES-MOREIRA J, SOARES C, JORGE A M, et al. Ensemble approaches for regression: A survey[J]. ACM Computing Surveys, 2012, 45(1): 10.
|
[19] |
CETINER S M, MUHLHEIM M D, GULER YIGITOGLU A, et al. Supervisory control system for multi-modular advanced reactors[R]. Oak Ridge: Oak Ridge National Laboratory, 2016.
|
[20] |
HUANG J C, KO K M, SHU M H, et al. Application and comparison of several machine learning algorithms and their integration models in regression problems[J]. Neural Computing and Applications, 2020, 32(10): 5461-5469. doi: 10.1007/s00521-019-04644-5
|