Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Liu Yu, Huang Mengqi, Peng Changhong, Du Zhengyu. Research on Heat Pipe Reactor Startup Process based on Autonomous Operation[J]. Nuclear Power Engineering, 2023, 44(3): 144-151. doi: 10.13832/j.jnpe.2023.03.0144
Citation: Liu Yu, Huang Mengqi, Peng Changhong, Du Zhengyu. Research on Heat Pipe Reactor Startup Process based on Autonomous Operation[J]. Nuclear Power Engineering, 2023, 44(3): 144-151. doi: 10.13832/j.jnpe.2023.03.0144

Research on Heat Pipe Reactor Startup Process based on Autonomous Operation

doi: 10.13832/j.jnpe.2023.03.0144
  • Received Date: 2022-07-28
  • Rev Recd Date: 2022-10-20
  • Publish Date: 2023-06-15
  • The application of the heat pipe reactor (HPR) urgently requires unmanned autonomous operation technology. Applying autonomous operation technology to HPR can realize state sensing, trend prediction and strategy optimization, which can effectively avoid human errors, improve the technical performance of HPR and expand the application fields of nuclear power. In this paper, the MegaPower reactor was used as the research object and the HPRTRAN program was used as the analysis tool to carry out an autonomous operation research based on the HPR start-up process, which is an important component of the HPR operation process, and then an autonomous operation framework consisting of monitoring and diagnosis layer, prediction layer and decision layer was established for the HPR start-up. The research results show that the prediction results of the autonomous operation system are highly accurate and the decision-making scheme is scientific and feasible. The research results can lay a foundation for the subsequent full realization of the unattended autonomous operation of the HPR.

     

  • loading
  • [1]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [2]
    RAMUHALLI P, CETINER S M. Concepts for autonomous operation of microreactors: ORNL/TM-2019/1305[R]. Oak Ridge: Oak Ridge National Laboratory, 2019.
    [3]
    STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [4]
    MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos: Los Alamos National Laboratory, 2015.
    [5]
    MA Y G, TIAN C Q, YU H X, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904. doi: 10.1016/j.pnucene.2021.103904
    [6]
    MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
    [7]
    马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [8]
    钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. doi: 10.13832/j.jnpe.2021.S2.0104
    [9]
    郑龙生,田康生. 基于相对计算的雷达探测概率建模方法[J]. 空军雷达学院学报,2005, 19(4): 23-26.
    [10]
    张洪. 大亚湾核电站堆芯功率分布测量及其处理[J]. 核科学与工程,1997, 17(1): 6-16.
    [11]
    PAULLADA A, RAJI I D, BENDER E M, et al. Data and its (dis)contents: A survey of dataset development and use in machine learning research[J]. Patterns, 2021, 2(11): 100336. doi: 10.1016/j.patter.2021.100336
    [12]
    BROWN G, WYATT J L, TIŇO P. Managing diversity in regression ensembles[J]. Journal of Machine Learning Research, 2005, 6: 1621-1650.
    [13]
    ASH A, SHWARTZ M. R2: a useful measure of model performance when predicting a dichotomous outcome[J]. Statistics in Medicine, 1999, 18(4): 375-384. doi: 10.1002/(SICI)1097-0258(19990228)18:4<375::AID-SIM20>3.0.CO;2-J
    [14]
    FRIEDMAN J H. On bias, variance, 0/1-loss, and the curse-of-dimensionality[J]. Data Mining and Knowledge Discovery, 1997, 1(1): 55-77. doi: 10.1023/A:1009778005914
    [15]
    REN Y, ZHANG L, SUGANTHAN P N. Ensemble classification and regression—recent developments, applications and future directions[J]. IEEE Computational Intelligence Magazine, 2016, 11(1): 41-53. doi: 10.1109/MCI.2015.2471235
    [16]
    SHAHHOSSEINI M, HU G P, PHAM H. Optimizing ensemble weights and hyperparameters of machine learning models for regression problems[J]. Machine Learning with Applications, 2022, 7: 100251.
    [17]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 186-188.
    [18]
    MENDES-MOREIRA J, SOARES C, JORGE A M, et al. Ensemble approaches for regression: A survey[J]. ACM Computing Surveys, 2012, 45(1): 10.
    [19]
    CETINER S M, MUHLHEIM M D, GULER YIGITOGLU A, et al. Supervisory control system for multi-modular advanced reactors[R]. Oak Ridge: Oak Ridge National Laboratory, 2016.
    [20]
    HUANG J C, KO K M, SHU M H, et al. Application and comparison of several machine learning algorithms and their integration models in regression problems[J]. Neural Computing and Applications, 2020, 32(10): 5461-5469. doi: 10.1007/s00521-019-04644-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (391) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return