Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Zhou Shan, Jiang Li, Shan Jianqiang, Guo Junliang. Verification and Analysis of Fine Subchannel Rod Bowing Model[J]. Nuclear Power Engineering, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065
Citation: Zhou Shan, Jiang Li, Shan Jianqiang, Guo Junliang. Verification and Analysis of Fine Subchannel Rod Bowing Model[J]. Nuclear Power Engineering, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065

Verification and Analysis of Fine Subchannel Rod Bowing Model

doi: 10.13832/j.jnpe.2024.01.0065
  • Received Date: 2023-03-08
  • Rev Recd Date: 2023-04-17
  • Publish Date: 2024-02-15
  • In order to improve the prediction ability of the sub-channel code for the local parameter changes under rod-bowing condition, a fined sub-channel rod-bowing model was developed in this study. The model, based on a detailed division of the sub-channels, allows a comprehensive analysis of rod bowing. The prediction ability of the fined sub-channel rod-bowing model on the axial flow and cross flow of the sub-channel was validated by computational fluid dynamics (CFD). Based on the validity of the model by CFD, the analysis of the trends of axial and transverse flows in the rod-bowing section was conducted. The results show that the predictions of the changing trends of axial flow and cross flow by ATHAS and CFD are basically consistent, and the fined sub-channel rod bowing model can better predict the changing trend of axial flow and cross flow caused by rod bowing. Therefore, the fined sub-channel rod bowing model can predict the influence of bowing rod on local flow field, which provides a basis for the prediction of critical heat flux.

     

  • loading
  • [1]
    DE LAMBERT S, CARDOLACCIA J, FAUCHER V, et al. Semi-analytical modeling of the flow redistribution upstream from the mixing grids in a context of nuclear fuel assembly bow[J]. Nuclear Engineering and Design, 2021, 371: 110940. doi: 10.1016/j.nucengdes.2020.110940
    [2]
    MASTERSON R E, WOLF L. COBRA-IIIP: An improved version of COBRA for full-core light water reactor analysis[J]. Nuclear Engineering and Design, 1978, 48(2-3): 293-310. doi: 10.1016/0029-5493(78)90078-X
    [3]
    STEWART W C, WHEELER C L, CENA R J, et al. COBRA-IV: The Model and the Method, BNWL-2214[R]. Washington: Pacific Northwest Laboratories, 1977.
    [4]
    BLYTH T S. Improvement of COBRA-TF subchannel thermal-hydraulics code (CTF) using Computational fluid dynamics[R]. CASL Technical Report, 2015
    [5]
    HWANG D H, KIM S J, SEO K W, et al. Accuracy and uncertainty analysis of PSBT benchmark exercises using a subchannel code MATRA[J]. Science and Technology of Nuclear Installations, 2012, 2012: 603752.
    [6]
    RAO Y F, ONDER E N, PODILA K. Assessment of subchannel code ASSERT-PV for supercritical applications[J]. The Journal of Supercritical Fluids, 2016, 117: 164-171. doi: 10.1016/j.supflu.2016.06.016
    [7]
    HELLER A S, FARNSWORTH D A, MCGUINN E J. Statistical methods applied to fuel rod bow analysis[J]. Journal of Pressure Vessel Techn ology, 1987, 109(1): 147-152. doi: 10.1115/1.3264847
    [8]
    DE LAMBERT S, CAMPIONI G, FAUCHER V, et al. Modeling the consequences of fuel assembly bowing on PWR core neutronics using a Monte-Carlo code[J]. Annals of Nuclear Energy, 2019, 134: 330-341. doi: 10.1016/j.anucene.2019.06.017
    [9]
    PURAGLIESI R, MUKIN R, CLIFFORD I, et al. Comparison of computational fluid dynamics and subchannel numerical solutions of fuel assemblies characterised by bowing[C]//18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). Portland: Curran Associates Inc., 2019.
    [10]
    MUKIN R, PURAGLIESI R, PECCHIA M, et al. Subchannel modeling of single rod bowing in a bundle geometry[J]. Nuclear Engineering and Design, 2018, 340: 347-369. doi: 10.1016/j.nucengdes.2018.09.032
    [11]
    刘伟,朱元兵,白宁,等. 热工水力子通道分析程序ATHAS的稳态验证[J]. 核科学与工程,2014, 34(2): 187-192.
    [12]
    NINOKATA H, EFTHIMIADIS A, TODREAS N E. Distributed resistance modeling of wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 1987, 104(1): 93-102. doi: 10.1016/0029-5493(87)90306-2
    [13]
    JIANG L, SHAN J Q. High-precision subchannel model for single and two phase flow in PWR rod bundles with mixing grids[C]//Proceedings of the 2022 29th International Conference on Nuclear Engineering. Shenzhen China: American Society of Mechanical Engineers (ASME), 2022.
    [14]
    REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(5): 933-950. doi: 10.1016/0017-9310(73)90033-1
    [15]
    张鸣远, 景思睿. 流体力学[M]. 西安: 西安交通大学出版社, 2013: 412-416
    [16]
    孔珑. 工程流体力学[M]. 第四版. 北京: 中国电力出版社, 2014: 118.
    [17]
    董思莹,刘扬,单建强. 定位格架模型对子通道分析程序的影响研究[J]. 核动力工程,2017, 38(S1): 41-44.
    [18]
    REN B, XU S Y, GAN F J, et al. Numerical simulation of the effect of rod bowing on critical heat flux[J]. Kerntechnik, 2022, 87(1): 38-47. doi: 10.1515/kern-2021-0037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (320) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return