Citation: | Zhou Shan, Jiang Li, Shan Jianqiang, Guo Junliang. Verification and Analysis of Fine Subchannel Rod Bowing Model[J]. Nuclear Power Engineering, 2024, 45(1): 65-71. doi: 10.13832/j.jnpe.2024.01.0065 |
[1] |
DE LAMBERT S, CARDOLACCIA J, FAUCHER V, et al. Semi-analytical modeling of the flow redistribution upstream from the mixing grids in a context of nuclear fuel assembly bow[J]. Nuclear Engineering and Design, 2021, 371: 110940. doi: 10.1016/j.nucengdes.2020.110940
|
[2] |
MASTERSON R E, WOLF L. COBRA-IIIP: An improved version of COBRA for full-core light water reactor analysis[J]. Nuclear Engineering and Design, 1978, 48(2-3): 293-310. doi: 10.1016/0029-5493(78)90078-X
|
[3] |
STEWART W C, WHEELER C L, CENA R J, et al. COBRA-IV: The Model and the Method, BNWL-2214[R]. Washington: Pacific Northwest Laboratories, 1977.
|
[4] |
BLYTH T S. Improvement of COBRA-TF subchannel thermal-hydraulics code (CTF) using Computational fluid dynamics[R]. CASL Technical Report, 2015
|
[5] |
HWANG D H, KIM S J, SEO K W, et al. Accuracy and uncertainty analysis of PSBT benchmark exercises using a subchannel code MATRA[J]. Science and Technology of Nuclear Installations, 2012, 2012: 603752.
|
[6] |
RAO Y F, ONDER E N, PODILA K. Assessment of subchannel code ASSERT-PV for supercritical applications[J]. The Journal of Supercritical Fluids, 2016, 117: 164-171. doi: 10.1016/j.supflu.2016.06.016
|
[7] |
HELLER A S, FARNSWORTH D A, MCGUINN E J. Statistical methods applied to fuel rod bow analysis[J]. Journal of Pressure Vessel Techn ology, 1987, 109(1): 147-152. doi: 10.1115/1.3264847
|
[8] |
DE LAMBERT S, CAMPIONI G, FAUCHER V, et al. Modeling the consequences of fuel assembly bowing on PWR core neutronics using a Monte-Carlo code[J]. Annals of Nuclear Energy, 2019, 134: 330-341. doi: 10.1016/j.anucene.2019.06.017
|
[9] |
PURAGLIESI R, MUKIN R, CLIFFORD I, et al. Comparison of computational fluid dynamics and subchannel numerical solutions of fuel assemblies characterised by bowing[C]//18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18). Portland: Curran Associates Inc., 2019.
|
[10] |
MUKIN R, PURAGLIESI R, PECCHIA M, et al. Subchannel modeling of single rod bowing in a bundle geometry[J]. Nuclear Engineering and Design, 2018, 340: 347-369. doi: 10.1016/j.nucengdes.2018.09.032
|
[11] |
刘伟,朱元兵,白宁,等. 热工水力子通道分析程序ATHAS的稳态验证[J]. 核科学与工程,2014, 34(2): 187-192.
|
[12] |
NINOKATA H, EFTHIMIADIS A, TODREAS N E. Distributed resistance modeling of wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 1987, 104(1): 93-102. doi: 10.1016/0029-5493(87)90306-2
|
[13] |
JIANG L, SHAN J Q. High-precision subchannel model for single and two phase flow in PWR rod bundles with mixing grids[C]//Proceedings of the 2022 29th International Conference on Nuclear Engineering. Shenzhen China: American Society of Mechanical Engineers (ASME), 2022.
|
[14] |
REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(5): 933-950. doi: 10.1016/0017-9310(73)90033-1
|
[15] |
张鸣远, 景思睿. 流体力学[M]. 西安: 西安交通大学出版社, 2013: 412-416
|
[16] |
孔珑. 工程流体力学[M]. 第四版. 北京: 中国电力出版社, 2014: 118.
|
[17] |
董思莹,刘扬,单建强. 定位格架模型对子通道分析程序的影响研究[J]. 核动力工程,2017, 38(S1): 41-44.
|
[18] |
REN B, XU S Y, GAN F J, et al. Numerical simulation of the effect of rod bowing on critical heat flux[J]. Kerntechnik, 2022, 87(1): 38-47. doi: 10.1515/kern-2021-0037
|