Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Zhang Jiaxin, Bao Hui, Cong Tenglong, Gu Hanyang. Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel[J]. Nuclear Power Engineering, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053
Citation: Zhang Jiaxin, Bao Hui, Cong Tenglong, Gu Hanyang. Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel[J]. Nuclear Power Engineering, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053

Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel

doi: 10.13832/j.jnpe.2024.04.0053
  • Received Date: 2023-10-11
  • Rev Recd Date: 2024-03-08
  • Publish Date: 2024-08-12
  • In response to the design and analysis requirements for the core of the helium-xenon cooled high temperature gas cooled reactor, this study has established a comprehensive three-dimensional heat transfer model for helium-xenon mixture. This model encompasses property model, turbulent model, and turbulent Pr model. Utilizing this model as a foundation, numerical analysis of the flow and heat transfer characteristics of helium-xenon mixture in the fuel rod bundle channel has been conducted. This research investigates the influence of geometric parameters and operational parameters on relevant characteristics. The results reveal that the presence of cladding will bring significant circumferential non-uniformity to the flow and heat transfer in the tight lattice rod bundle channel, necessitating consideration of cladding in both subchannel and three-dimensional numerical simulation. In addition to cladding, heat transfer in the tight lattice rod bundle channel is primarily influenced by the rod diameter ratio. Under identical simulation conditions, a larger rod diameter ratio leads to enhanced convective heat transfer of the mixed gas.

     

  • loading
  • [1]
    张泽,薛翔,王园丁,等. 空间核动力推进技术研究展望[J]. 火箭推进,2021, 47(5): 1-13.
    [2]
    TOURNIER J M P, EL-GENK M S. Properties of noble gases and binary mixtures for closed Brayton Cycle applications[J]. Energy Conversion and Management, 2008, 49(3): 469-492. doi: 10.1016/j.enconman.2007.06.050
    [3]
    王志伟. 基于空间核电源系统的氦氙混合工质布雷顿循环特性研究[D]. 哈尔滨: 哈尔滨工业大学,2021.
    [4]
    TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit. San Diego: American Institute of Aeronautics and Astronautics, 2006.
    [5]
    KESTIN J, KHALIFA H E, WAKEHAM W A. The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases[J]. Physica A: Statistical Mechanics and its Applications, 1978, 90(2): 215-228. doi: 10.1016/0378-4371(78)90110-3
    [6]
    THORNTON E. Viscosity and thermal conductivity of binary gas mixtures: xenon-krypton, xenon-argon, xenon-neon and xenon-helium[J]. Proceedings of the Physical Society, 1960, 76(1): 104-112. doi: 10.1088/0370-1328/76/1/313
    [7]
    ZHOU B, JI Y, SUN J, et al. Modified turbulent Prandtl number model for helium–xenon gas mixture with low Prandtl number[J]. Nuclear Engineering and Design, 2020, 366: 110738. doi: 10.1016/j.nucengdes.2020.110738
    [8]
    QIN H, FANG Y L, WANG C L, et al. Numerical investigation on heat transfer characteristics of HELIUM-XENON gas mixture[J]. International Journal of Energy Research, 2021, 45(8): 11745-11758. doi: 10.1002/er.5692
    [9]
    KAYS W M, CRAWFORD M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993: 266-268.
    [10]
    WEIGAND B, FERGUSON J R, CRAWFORD M E. An extended Kays and Crawford turbulent Prandtl number model[J]. International Journal of Heat and Mass Transfer, 1997, 40(17): 4191-4196. doi: 10.1016/S0017-9310(97)00084-7
    [11]
    TAYLOR M F, BAUER K E, Mceligot D M. Internal forced convection to low-Prandtl-number gas mixtures[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 13-25. doi: 10.1016/0017-9310(88)90218-9
    [12]
    Kawamura Lab. DNS Database of Wall Turbulence and Heat Transfer: Text database of Poiseuille flow[DB/OL]. (2009-03-10)[2023-05-26]. https://www.rs.tus.ac.jp/t2lab/db/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (195) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return