Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Zeng Fulin, Zhao Pengcheng, Li Lingli, Liu Zijing, Li Wei. Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network[J]. Nuclear Power Engineering, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044
Citation: Zeng Fulin, Zhao Pengcheng, Li Lingli, Liu Zijing, Li Wei. Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network[J]. Nuclear Power Engineering, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044

Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network

doi: 10.13832/j.jnpe.2024.050044
  • Received Date: 2024-05-27
  • Rev Recd Date: 2024-07-12
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • The thermal stratification phenomenon in the upper plenum of the lead-bismuth fast reactor has significant implications for the safety of internal components and the ability to remove residual heat. This paper focuses on analyzing this phenomenon. Firstly, high-precision full-order snapshots of the thermal stratification in the upper plenum of the lead-bismuth fast reactor are obtained using the computational fluid dynamics software FLUENT. Then, the graph neural network (GNN) is employed to construct a graph autoencoder (GAE) for nonlinear order reduction of the snapshots, and the reduced reconstruction results are compared with the linear reduction results obtained using Proper orthogonal decomposition (POD). Finally, a multilayer perceptron is used for online state recognition and predictive analysis of the thermal stratification snapshots. The research results demonstrate that the graph neural network, due to its high level of nonlinearity and its inherent advantage in nonlinear order reduction of large-scale CFD data, achieves comparable first-order modal reconstruction accuracy to that of POD with 30~50 basis functions. During the online process, the feature recognition and prediction of thermal stratification snapshots can be completed within a duration of 472 ms, with accuracy similar to the reconstruction accuracy. The related research results can provide a new analytical method support for the evolution mechanism analysis and consequence prediction of thermal stratification phenomenon in lead-bismuth fast reactors.

     

  • loading
  • [1]
    WU Z Y, LU C H, MORGAN S, et al. A status review on the thermal stratification modeling methods for Sodium-cooled Fast Reactors[J]. Progress in Nuclear Energy, 2020, 125: 103369. doi: 10.1016/j.pnucene.2020.103369
    [2]
    DONG Z Y, QIU H R, WANG M J, et al. Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)[J]. Annals of Nuclear Energy, 2022, 174: 109176. doi: 10.1016/j.anucene.2022.109176
    [3]
    魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [4]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [5]
    ZWIJSEN K, UITSLAG-DOOLAARD H, ROELOFS F, et al. Fast reactor multi-scale and multi-physics modelling at NRG[J]. Nuclear Engineering and Design, 2023, 410: 112389. doi: 10.1016/j.nucengdes.2023.112389
    [6]
    LUO X, WANG C, ZOU Z R, et al. Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor[J]. Nuclear Science and Techniques, 2022, 33(2): 18. doi: 10.1007/s41365-022-01008-y
    [7]
    柏云清,李文博,李文东,等. 池式铅基堆热分层现象研究综述[J]. 核科学与工程,2023, 43(2): 286-297. doi: 10.3969/j.issn.0258-0918.2023.02.007
    [8]
    LIU D X, MARTHALER P G, CLASS A G, et al. Simulation of stratification phenomena with a spectral Fourier–Chebyshev method on the background of a lead-cooled fast reactor[J]. Annals of Nuclear Energy, 2023, 192: 109931. doi: 10.1016/j.anucene.2023.109931
    [9]
    HU R. Development of a reduced-order three-dimensional flow model for thermal mixing and stratification simulation during reactor transients: AC02-06CH11357[R]. Argonne: Argonne National Lab., 2017.
    [10]
    ZOU L, NUNEZ D, HU R. Development and validation of SAM multi-dimensional flow model for thermal mixing and stratification modeling: ANL-NSE-20/19[R]. Argonne: Argonne National Lab., 2020.
    [11]
    HU R. Progress report on SAM reduced-order model development for thermal stratification and mixing during reactor transients: ANL/NE-17/29[R]. Argonne: Argonne National Lab., 2017.
    [12]
    HU R. Three-dimensional flow model development for thermal mixing and stratification modeling in reactor system transients analyses[J]. Nuclear Engineering and Design, 2019, 345: 209-215. doi: 10.1016/j.nucengdes.2019.02.018
    [13]
    LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
    [14]
    杨涛,赵鹏程,赵亚楠,等. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程,2023, 44(2): 48-53.
    [15]
    YANG T, ZHAO P C, ZHAO Y N, et al. Development of reduced-order thermal stratification model for upper plenum of a lead–bismuth fast reactor based on CFD[J]. Nuclear Engineering and Technology, 2023, 55(8): 2835-2843. doi: 10.1016/j.net.2023.05.002
    [16]
    FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data[J]. Physics of Fluids, 2020, 32(9): 095110. doi: 10.1063/5.0020721
    [17]
    HU J W, ZHANG W W. Mesh-Conv: convolution operator with mesh resolution independence for flow field modeling[J]. Journal of Computational Physics, 2022, 452: 110896. doi: 10.1016/j.jcp.2021.110896
    [18]
    KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries[J]. Physics of Fluids, 2021, 33(2): 027104. doi: 10.1063/5.0033376
    [19]
    BARWEY S, SHANKAR V, VISWANATHAN V, et al. Multiscale graph neural network autoencoders for interpretable scientific machine learning[J]. Journal of Computational Physics, 2023, 495: 112537. doi: 10.1016/j.jcp.2023.112537
    [20]
    PICHI F, MOYA B, HESTHAVEN J S. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs[J]. Journal of Computational Physics, 2024, 501: 112762. doi: 10.1016/j.jcp.2024.112762
    [21]
    TOMCHIK C, VEGENDLA P, BUCKNOR M, et al. Benchmark specification for select experiments conducted at the university of Wisconsin-Madison thermal stratification test facility: ANL-ART-253[R]. Argonne: Argonne National Lab., 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (13) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return