Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Li Dongyang, Quan Zixuan, Zhang Biao, Li Jiangkuan, Tan Sichao, Tian Ruifeng. Research on Regression Prediction of Pressurizer Liquid Level under Ocean Conditions Based on SSA-LSTM Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 293-299. doi: 10.13832/j.jnpe.2024.050045
Citation: Li Dongyang, Quan Zixuan, Zhang Biao, Li Jiangkuan, Tan Sichao, Tian Ruifeng. Research on Regression Prediction of Pressurizer Liquid Level under Ocean Conditions Based on SSA-LSTM Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 293-299. doi: 10.13832/j.jnpe.2024.050045

Research on Regression Prediction of Pressurizer Liquid Level under Ocean Conditions Based on SSA-LSTM Neural Network

doi: 10.13832/j.jnpe.2024.050045
  • Received Date: 2024-05-15
  • Rev Recd Date: 2024-06-17
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-02
  • To ensure the safe operation of the nuclear reactor system in the ocean environment, it is necessary to establish a set of computational models to obtain the real-time liquid level in the pressurizer. By building an experimental system to collect relevant data, the Long-Short Term Memory (LSTM) neural network is optimized based on the sparrow search algorithm (SSA), and the liquid level regression prediction model is established according to the measured key parameters such as pressure and motion attitude. The research results show that the prediction accuracy of the established liquid level regression prediction model is excellent, which is obviously better than other traditional neural networks. The model has good generalization ability, and the prediction accuracy of fresh samples is still acceptable. By integrating the model into the control system, the liquid level can be output in real time, which can improve the safety of nuclear power operation under ocean conditions and provide reference for the intelligent operation and maintenance of nuclear power.

     

  • loading
  • [1]
    LI D Y, QUAN Z X, ZHANG B, et al. Study on the liquid level characteristics and reconstruction strategy of the in-vessel pressurizer under ocean conditions[J]. Nuclear Engineering and Design, 2024, 418: 112857. doi: 10.1016/j.nucengdes.2023.112857
    [2]
    WEI T Y, CHEN J R, ZHANG B, et al. Effects of ocean conditions on water level measurement of pressurizer[J]. Annals of Nuclear Energy, 2022, 169: 108913. doi: 10.1016/j.anucene.2021.108913
    [3]
    LI D Y, YUE J Y, WEI T Y, et al. Optimization of pressure tube-type measuring instrument for floating nuclear power plant[J]. Annals of Nuclear Energy, 2024, 205: 110558. doi: 10.1016/j.anucene.2024.110558
    [4]
    CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
    [5]
    张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
    [6]
    陈涵瀛. 核电站热工水力系统工况预测与诊断方法研究[D]. 哈尔滨: 哈尔滨工程大学,2018.
    [7]
    MARSEGUERRA M, ZIO E, AVOGADRI P. Model identification by neuro-fuzzy techniques: predicting the water level in a steam generator of a PWR[J]. Progress in Nuclear Energy, 2004, 44(3): 237-252. doi: 10.1016/S0149-1970(04)90012-1
    [8]
    谭季秋,鄂加强,钟定清. 联合循环余热锅炉汽包水位晃荡信号智能预测[J]. 中南大学学报: 自然科学版,2012, 43(3): 966-971.
    [9]
    魏天一,张彪,李东阳,等. 海洋条件下小型堆稳压器液位智能预测研究[J]. 哈尔滨工程大学学报,2023, 44(9): 1590-1596. doi: 10.11990/jheu.202201031
    [10]
    王磊,马驰骋,齐俊艳,等. 基于ARIMA-LSTM的矿区地表沉降预测方法[J]. 计算机工程,2025,51(1): 98-105.
    [11]
    孙大彬,李磊,田兆斐,等. 混合神经网络的包壳峰值温度预测研究[J]. 哈尔滨工程大学学报,2022, 43(12): 1728-1735.
    [12]
    刘岳,于静,金秀章. 基于特征优化和改进长短期记忆神经网络的NO x质量浓度预测[J]. 热力发电,2021, 50(7): 162-169.
    [13]
    LI Z L, DU J M, ZHU W M, et al. Regression predictive modeling of high-speed motorized spindle using POA-LSTM[J]. Case Studies in Thermal Engineering, 2024, 54: 104053. doi: 10.1016/j.csite.2024.104053
    [14]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [15]
    薛建凯. 一种新型的群智能优化技术的研究与应用——麻雀搜索算法[D]. 上海: 东华大学,2019.
    [16]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (429) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return