Citation: | Qi Lin, Wang Shuguang, Wang Xuesong, Jin Zhao. Research on Data Assimilation Technology for Nuclear Power Source Operating Conditions[J]. Nuclear Power Engineering, 2025, 46(3): 236-243. doi: 10.13832/j.jnpe.2024.060004 |
[1] |
ZHANG X L, SU G F, YUAN H Y, et al. Modified ensemble kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated[J]. Journal of Hazardous Materials, 2014, 280: 143-155. doi: 10.1016/j.jhazmat.2014.07.064
|
[2] |
ZHENG D, LEUNG J, LEE B, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11): 2438-2446. doi: 10.1016/j.atmosenv.2006.05.076
|
[3] |
HEO J, TURINSKY P J, DOSTER J M. Optimization of thermal-hydraulic reactor system for SMRs via data assimilation and uncertainty quantification[J]. Nuclear Science and Engineering, 2013, 173(3): 293-311. doi: 10.13182/NSE11-113
|
[4] |
胡永红. 小型飞行器高度定位数据融合方法[J]. 传感器技术,2003, 22(6): 24-26.
|
[5] |
TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011(1): 154798.
|
[6] |
LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. doi: 10.2514/1.J055201
|
[7] |
BUSQUIM E SILVA R, MARQUES A L F, CRUZ J J, et al. Reactivity estimation during a reactivity-initiated accident using the extended Kalman filter[J]. Annals of Nuclear Energy, 2015, 85: 753-762. doi: 10.1016/j.anucene.2015.06.031
|
[8] |
黄喜军. 数据校正在火电机组性能诊断中的研究[D]. 南京: 东南大学,2018.
|
[9] |
HAMILL T M, WHITAKER J S, SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776-2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
|
[10] |
ANDERSON J L, ANDERSON S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2741-2758. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
|
[11] |
HOUTEKAMER P L, DEROME J. Methods for ensemble prediction[J]. Monthly Weather Review, 1995, 123(7): 2181-2196. doi: 10.1175/1520-0493(1995)123<2181:MFEP>2.0.CO;2
|
[12] |
HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A: Dynamic Meteorology and Oceanography, 1983, 35(2): 100-118. doi: 10.3402/tellusa.v35i2.11425
|
[13] |
ZHOU B B, DU J, DIMEGO G. Introduction to the NCEP very short range ensemble forecast system (VSREF)[C]//14th Conference on Aviation, Range, and Aerospace Meteorology. Atlanta: AMS, 2010.
|
[14] |
傅娜,陈葆德,谭燕,等. 基于快速更新同化的滞后短时集合预报试验及检验[J]. 气象,2013, 39(10): 1247-1256.
|
[15] |
JIE W H, WU T W, WANG J, et al. Improvement of 6-15 day precipitation forecasts using a time-lagged ensemble method[J]. Advances in Atmospheric Sciences, 2014, 31(2): 293-304. doi: 10.1007/s00376-013-3037-8
|
[16] |
ABARBANEL H D I. Predicting the future: completing models of observed complex systems[M]. New York: Springer, 2013: 125-127.
|
[17] |
陈鹤,杨大文,刘钰,等. 集合卡尔曼滤波数据同化方法改进土壤水分模拟效果[J]. 农业工程学报,2016, 32(02): 99-104.
|
[18] |
朱继洲. 核反应堆安全分析[M]. 第三版. 西安: 西安交通大学出版社,2018: 109-111.
|