Citation: | Ke Lishi, Du Haihu, Yang Xiaohu, Zhang Sheng, Huang Lijun. General Health Assessment Method for Critical Nuclear Power Plant Equipment Based on Time-Series Characteristics of State Parameters[J]. Nuclear Power Engineering, 2025, 46(3): 229-235. doi: 10.13832/j.jnpe.2024.060009 |
[1] |
张红飞,夏霜,程志友,等. 基于改进马氏距离的空压机健康状态评估[J]. 电测与仪表,2018, 55(17): 32-36,93. doi: 10.3969/j.issn.1001-1390.2018.17.006
|
[2] |
周裕华. 滚动轴承的性能退化评估与剩余使用寿命预测方法的研究[D]. 广州: 华南理工大学,2018.
|
[3] |
李康,赵乾宏,林习良,等. 一种利用多种特征信息的旋转机械设备状态评估方法[J]. 科学技术与工程,2014, 14(21): 280-284. doi: 10.3969/j.issn.1671-1815.2014.21.053
|
[4] |
COBLE J B, RAMUHALLI P, BOND L J, et al. Prognostics and health management in nuclear power plants: a review of technologies and applications: PNNL-21515[R]. Richland: Pacific Northwest National Laboratory (PNNL), 2012.
|
[5] |
CARNEIRO A L G, PORTO JR A C S. Development of an integrated condition monitoring and diagnostic system for process control valves used in nuclear power plant[M]. Italy: Chemical Engineering Transactions (CET), 2013: 871-876.
|
[6] |
PENG Y, ZHANG Y J, LIU D T, et al. Degradation estimation using feature increment stepwise linear regression for PWM inverter of electro-mechanical actuator[J]. Microelectronics Reliability, 2018, 88-90: 514-518. doi: 10.1016/j.microrel.2018.06.025
|
[7] |
COBLE J, RAMUHALLI P, BOND L J, et al. A review of prognostics and health management applications in nuclear power plants[J]. International Journal of Prognostics and Health Management, 2015, 6: 1-22.
|
[8] |
刘永阔. 核动力装置故障诊断智能技术的研究[D]. 哈尔滨: 哈尔滨工程大学,2006.
|
[9] |
赵明乾. 基于大数据的电力设备故障分析与诊断的研究[D]. 北京: 华北电力大学,2018.
|
[10] |
WIDODO A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2560-2574. doi: 10.1016/j.ymssp.2006.12.007
|
[11] |
LIU J, SERAOUI R, VITELLI V, et al. Nuclear power plant components condition monitoring by probabilistic support vector machine[J]. Annals of Nuclear Energy, 2013, 56: 23-33. doi: 10.1016/j.anucene.2013.01.005
|
[12] |
BARALDI P, DI MAIO F, ZIO E. Unsupervised clustering for fault diagnosis in nuclear power plant components[J]. International Journal of Computational Intelligence Systems, 2013, 6(4): 764-777. doi: 10.1080/18756891.2013.804145
|
[13] |
袁野. 基于多源信息融合的设备关键部件状态评估研究[D]. 重庆: 重庆大学,2018.
|
[14] |
李志远. 多传感器信息融合深度森林的柱塞泵健康评估方法研究[D]. 上海: 上海交通大学,2020.
|