Citation: | Wang Yao, Cai Zhenbing, Ning Chuangming, Gao Xiong, Ren Quanyao. Experimental Study on Fretting Wear Behavior of Nuclear TP316H Steel in Liquid Lead-Bismuth at Different Temperatures[J]. Nuclear Power Engineering, 2025, 46(4): 125-136. doi: 10.13832/j.jnpe.2024.070046 |
[1] |
ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
|
[2] |
CHENG J, ZHU S Y, TAN H, et al. Lead-bismuth liquid metal: lubrication behaviors[J]. Wear, 2019, 430-431: 94-99. doi: 10.1016/j.wear.2019.04.027
|
[3] |
LOEWEN E P, TOKUHIRO A T. Status of research and development of the lead-alloy-cooled fast reactor[J]. Journal of Nuclear Science and Technology, 2003, 40(8): 614-627. doi: 10.1080/18811248.2003.9715398
|
[4] |
GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920
|
[5] |
WANG H, XIAO J, WANG H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review[J]. Coatings, 2021, 11(3): 364. doi: 10.3390/coatings11030364
|
[6] |
CAI Z B, LI Z Y, YIN M G, et al. A review of fretting study on nuclear power equipment[J]. Tribology International, 2020, 144: 106095. doi: 10.1016/j.triboint.2019.106095
|
[7] |
孙达云,高阳,张乐福,等. 新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为[J]. 核动力工程,2023, 44(5): 244-250.
|
[8] |
任全耀,蒲曾坪,焦拥军,等. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程,2022, 43(S2): 82-87.
|
[9] |
WANG W B, CHENG K, WANG B, et al. Sensitivity study of thermal hydraulics to corrosion of heat exchange tubes in steam generator[J]. Nuclear Engineering and Design, 2023, 402: 112081. doi: 10.1016/j.nucengdes.2022.112081
|
[10] |
WANG W B, ZHANG M, CHENG K, et al. A coupled model of corrosion of the steam generator heat transfer tube[J]. Nuclear Engineering and Design, 2022, 396: 111895. doi: 10.1016/j.nucengdes.2022.111895
|
[11] |
SORIA S R, TOLLEY A, YAWNY A. Running condition and material response fretting maps of incoloy 800 steam generator tubes against AISI 304L pads in air and room temperature[J]. Tribology International, 2019, 135: 408-420. doi: 10.1016/j.triboint.2019.03.027
|
[12] |
薛颖成,吴宗辉,何建. 考虑微动磨损下蒸汽发生器传热管时变可靠性评估方法[J]. 核动力工程,2024, 45(1): 164-170.
|
[13] |
MING H L, LIU X C, ZHANG Z M, et al. Effect of normal force on the fretting wear behavior of Inconel 690TT against 304 stainless steel in simulated secondary water of pressurized water reactor[J]. Tribology International, 2018, 126: 133-143. doi: 10.1016/j.triboint.2018.05.020
|
[14] |
ZHANG Y S, WU B, MING H L, et al. Fretting corrosion-induced microstructural evolution of alloy 690TT tube in high temperature pressurised water[J]. Corrosion Science, 2022, 209: 110774. doi: 10.1016/j.corsci.2022.110774
|
[15] |
冯铄,陈旭东,汤瑞,等. 核用TP316H钢在不同介质环境下的微动磨损性能[J]. 中国机械工程,2022, 33(13): 1551-1559,1603. doi: 10.3969/j.issn.1004-132X.2022.13.006
|
[16] |
DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time[J]. Journal of Nuclear Materials, 2012, 423(1-3): 79-86. doi: 10.1016/j.jnucmat.2012.01.007
|
[17] |
DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion of steels for lead alloys cooled ADS[J]. Journal of Nuclear Materials, 2014, 450(1-3): 225-236. doi: 10.1016/j.jnucmat.2013.07.005
|
[18] |
DEL GIACCO M, WEISENBURGER A, MÜLLER G. Fretting of fuel cladding materials for Pb cooled fast reactors—approach to long term prediction using fretting maps[J]. Nuclear Engineering and Design, 2014, 280: 697-703. doi: 10.1016/j.nucengdes.2014.05.043
|
[19] |
DEL GIACCO M, WEISENBURGER A, SPIELER P, et al. Experimental equipment for fretting corrosion simulation in heavy liquid metals for nuclear applications[J]. Wear, 2012, 280-281: 46-53. doi: 10.1016/j.wear.2012.01.018
|
[20] |
CAO Y, HUA K, LI N, et al. Revealing the critical failure factor and sub-surface damage mechanism of 316 stainless steel during fretting corrosion under the molten lead-bismuth eutectic[J]. Tribology International, 2023, 187: 108767. doi: 10.1016/j.triboint.2023.108767
|
[21] |
HUA K, CAO Y, LI N, et al. Revealing fretting corrosion synergistic mechanism of 316 stainless steel in liquid lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2023, 215: 111058. doi: 10.1016/j.corsci.2023.111058
|
[22] |
TORRES H, VARGA M, RIPOLL M R. High temperature hardness of steels and iron-based alloys[J]. Materials Science and Engineering: A, 2016, 671: 170-181. doi: 10.1016/j.msea.2016.06.058
|
[23] |
HUA K, CAO Y, YU X F, et al. Investigation on fretting wear mechanism of 316 stainless steel induced by Ni dissolution during pre-immersion corrosion in the liquid lead-bismuth eutectic (LBE)[J]. Tribology International, 2022, 174: 107772. doi: 10.1016/j.triboint.2022.107772
|
[24] |
肖龙仁,雷玉成,朱强,等. 不同合金成分的T91/316L焊缝在550℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报,2019, 33(11): 1805-1812. doi: 10.11896/cldb.18060005
|
[25] |
WARMUTH A R, PEARSON S R, SHIPWAY P H, et al. The effect of contact geometry on fretting wear rates and mechanisms for a high strengthsteel[J]. Wear, 2013, 301(1-2): 491-500. doi: 10.1016/j.wear.2013.01.018
|
[26] |
李好杰,宁闯明,李正阳,等. 904L不锈钢在不同气氛下微动磨损性能研究[J]. 摩擦学学报,2023, 43(10): 1128-1139.
|
[27] |
宋伟,李万佳,俞树荣,等. 热力耦合下TC4合金微动磨损行为影响的研究[J]. 化工学报,2022, 73(3): 1324-1334.
|
[28] |
宋伟,尘强,俞树荣,等. TC4合金在不同环境介质中微动磨损行为研究[J]. 稀有金属材料与工程,2020, 49(7): 2393-2399.
|
[29] |
高玉,于成涛,余中狄,等. 核电站用不锈钢在液态Pb-Bi合金中的腐蚀行为研究进展[J]. 表面技术,2022, 51(2): 144-155.
|
[30] |
MARTINELLI L, VANNEROY F, ROSADO J C D, et al. Nickel solubility limit in liquid lead–bismuth eutectic[J]. Journal of Nuclear Materials, 2010, 400(3): 232-239. doi: 10.1016/j.jnucmat.2010.03.008
|
[31] |
周恺,谢发勤,吴向清,等. 载荷对TC21钛合金微弧氧化涂层微动磨损性能的影响[J]. 稀有金属材料与工程,2021, 50(8): 2831-2840.
|
[32] |
BERTHIER Y, VINCENT L, GODET M. Fretting fatigue and fretting wear[J]. Tribology International, 1989, 22(4): 235-242. doi: 10.1016/0301-679X(89)90081-9
|
[33] |
WANG S J, YUE T Y, WANG D G, et al. Effect of wear debris on fretting fatigue crack initiation[J]. Friction, 2022, 10(6): 927-943. doi: 10.1007/s40544-021-0543-z
|
[34] |
辛龙,李杰,陆永浩. Inconel 690合金高温微动磨损特性研究[J]. 摩擦学学报,2015, 35(4): 470-476.
|