Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Yang Qingyu, Ma Yan, Yan Jiachuan, Gao Ge, Liu Mengsha. Fragility Analysis of Prestressed Containment under Thermal-Compressive Coupling Condition[J]. Nuclear Power Engineering, 2025, 46(4): 181-191. doi: 10.13832/j.jnpe.2024.070048
Citation: Yang Qingyu, Ma Yan, Yan Jiachuan, Gao Ge, Liu Mengsha. Fragility Analysis of Prestressed Containment under Thermal-Compressive Coupling Condition[J]. Nuclear Power Engineering, 2025, 46(4): 181-191. doi: 10.13832/j.jnpe.2024.070048

Fragility Analysis of Prestressed Containment under Thermal-Compressive Coupling Condition

doi: 10.13832/j.jnpe.2024.070048
  • Received Date: 2024-07-24
  • Rev Recd Date: 2024-10-06
  • Publish Date: 2025-08-15
  • In this paper, a prestressed containment structure is modeled, the finite element analysis software ABAQUS is used to simulate the thermal-compressive coupling test, and random samples of the containment obtained by using the Latin hypercube sampling method are calculated to obtain 2 containment susceptibility curves for analyzing the susceptibility corresponding to the overall functional failure and structural failure of the containment. The calculation results show that the lower and upper limits of the inner pressure bearing capacity of the containment are 0.9666 MPa and 1.0352 MPa, respectively. Under the steel lining functional failure criterion, the elastic modulus of HRB400 reinforcement has the greatest influence on the inner pressure bearing capacity of the containment; the maximum tensile strain of the steel lining is concentrated near the equipment gate opening. Under the structural failure criterion of prestressed tendons, the elastic modulus of HRB500 steel bars has the greatest influence on the internal pressure bearing capacity of the containment; the distribution of the maximum tensile strain of prestressed tendons has no obvious pattern.

     

  • loading
  • [1]
    鲁刚,郑宽. 能源高质量发展要求下核电发展前景研究[J]. 中国核电,2019,12(5):498-502.
    [2]
    SKILLMAN G R, REMPE J L. The Three Mile Island Unit 2 Accident [M]//GREENSPAN E. Encyclopedia of Nuclear Energy. Oxford: Elsevier. 2021: 17-29.
    [3]
    SICH A R. The chernobyl nuclear power plant Unit-4 accident[M]//GREENSPAN E. Earth Systems and Environmental Sciences. Amsterdam: Elsevier, 2021: 30-52.
    [4]
    OHBA T, TANIGAWA K, LIUTSKO L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning[J]. Environment International, 2021, 148: 106379. doi: 10.1016/j.envint.2021.106379
    [5]
    HORSCHEL D S, CLAUSS D B. The response of steel containment models to internal pressurization[C]//Structural Engineering in Nuclear Facilities. New York, NY: ASCE, 1984: 534-553.
    [6]
    HESSHEIMER M F, KLAMERUS E W, LAMBERT L D, et al. Overpressurization test of a 1: 4-scale prestressed concrete containment vessel model: NUREG/CR-6810[R]. Albuquerque: Sandia National Laboratories, 2003.
    [7]
    HESSHEIMER M F, MATHET E. CSNI international standard problem (ISP): NEA/CSNI/R(2005)5[R]. Paris: OECD Nuclear Energy Agency, 2005.
    [8]
    GUPTA R, ROSSAT D, DÉROBERT X, et al. Blind comparison of saturation ratio profiles on large RC structures by means of NDT and SFE—Application to the VeRCoRs mock-up[J]. Engineering Structures, 2022, 258: 114057. doi: 10.1016/j.engstruct.2022.114057
    [9]
    CHARPIN L, NIEPCERON J, CORBIN M, et al. Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark[J]. Nuclear Engineering and Design, 2021, 377: 111136. doi: 10.1016/j.nucengdes.2021.111136
    [10]
    薛荣军,王洪良,褚濛,等. 预应力安全壳内压作用下的有限元研究[J]. 建筑结构,2018, 48(8): 77-82.
    [11]
    WU J Y, HAO D D, LI W S, et al. Numerical modeling and simulation of a prestressed concrete containment vessel[J]. Annals of Nuclear Energy, 2018, 121: 269-283. doi: 10.1016/j.anucene.2018.06.039
    [12]
    YAN J H, LIN Y Z, WANG Z F, et al. Failure mechanism of a prestressed concrete containment vessel in nuclear power plant subjected to accident internal pressure[J]. Annals of Nuclear Energy, 2019, 133: 610-622. doi: 10.1016/j.anucene.2019.07.013
    [13]
    WANG Z F, YAN J C, LIN Y Z, et al. Study on failure mechanism of prestressed concrete containments following a loss of coolant accident[J]. Engineering Structures, 2020, 202: 109860. doi: 10.1016/j.engstruct.2019.109860
    [14]
    周磊,钟红,李建波,等. 按不同标准设计的CPR1000安全壳内压易损性分析[J]. 工业建筑,2017, 47(1): 16-20.
    [15]
    ZHOU L, LI J B, ZHONG H, et al. Fragility comparison analysis of CPR1000 PWR containment subjected to internal pressure[J]. Nuclear Engineering and Design, 2018, 330: 250-264.
    [16]
    金松,李忠诚,蓝天云,等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程,2020, 41(4): 96-100.
    [17]
    金松,李鑫波,贡金鑫.严重事故下核电厂安全壳结构概率性能评价[J].工程力学, 2021, 38(06): 103-112.
    [18]
    JIN S, LI Z C, DONG Z F, et al. A simplified fragility analysis methodology for containment structure subjected to overpressure condition[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104104. doi: 10.1016/j.ijpvp.2020.104104
    [19]
    JIN S, GONG J X. Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure[J]. Reliability Engineering & System Safety, 2021, 208: 107400.
    [20]
    MANDAL T K, GHOSH S, PUJARI N N. Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models[J]. Structural Safety, 2016, 58: 11-19. doi: 10.1016/j.strusafe.2015.08.003
    [21]
    Joint Committee on Structural Safety (JCSS). Probabilistic Model Code: Part 3 – Material Properties:No. JCSS-2001 [R]. Lyngby, Denmark: JCSS, 2001.
    [22]
    YAO D, GAO G, YANG Q, et al. Mechanical behaviors and internal pressure bearing capacity of nuclear containment using UHPC and ECC: From numerical simulation, machine learning prediction to fragility analysis [J]. Nuclear Engineering and Design, 2024, 429: 113617.
    [23]
    YANG Q Y, YAN J C, FAN F. Pretest analysis of a prestressed concrete containment 1: 3.2 scale model under thermal-pressure coupling conditions[J]. Nuclear Engineering and Technology, 2023, 55(6): 2069-2087. doi: 10.1016/j.net.2023.03.001
    [24]
    U. S. Nuclear Regulatory Commission. Containment structural integrity evaluation for internal pressure loadings above design-basis pressure Regulatory guide: Regulatory Guide 1.216[R]. US: U. S. Nuclear Regulatory Commission, 2010.
    [25]
    HESSHEIMER M F, DAMERON R A. Containment integrity research at Sandia national laboratories-an overview: NUREG/CR-6906[R]. Washington: Division of Fuel, Engineering & Radiological Research, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2006.
    [26]
    杨青屿. 某预应力安全壳热-压作用下破坏机理分析及试验设计[D]. 哈尔滨: 哈尔滨工业大学,2021. doi: 10.27061/d.cnki.ghgdu.2021.003633.
    [27]
    JIN S, LI Z C, LAN T Y, et al. Fragility analysis of prestressed concrete containment under severe accident condition[J]. Annals of Nuclear Energy, 2019, 131: 242-256.
    [28]
    马燕. 某预应力安全壳热-压耦合作用下易损性分析[D]. 哈尔滨: 哈尔滨工业大学,2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return