Citation: | Yang Qingyu, Ma Yan, Yan Jiachuan, Gao Ge, Liu Mengsha. Fragility Analysis of Prestressed Containment under Thermal-Compressive Coupling Condition[J]. Nuclear Power Engineering, 2025, 46(4): 181-191. doi: 10.13832/j.jnpe.2024.070048 |
[1] |
鲁刚,郑宽. 能源高质量发展要求下核电发展前景研究[J]. 中国核电,2019,12(5):498-502.
|
[2] |
SKILLMAN G R, REMPE J L. The Three Mile Island Unit 2 Accident [M]//GREENSPAN E. Encyclopedia of Nuclear Energy. Oxford: Elsevier. 2021: 17-29.
|
[3] |
SICH A R. The chernobyl nuclear power plant Unit-4 accident[M]//GREENSPAN E. Earth Systems and Environmental Sciences. Amsterdam: Elsevier, 2021: 30-52.
|
[4] |
OHBA T, TANIGAWA K, LIUTSKO L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning[J]. Environment International, 2021, 148: 106379. doi: 10.1016/j.envint.2021.106379
|
[5] |
HORSCHEL D S, CLAUSS D B. The response of steel containment models to internal pressurization[C]//Structural Engineering in Nuclear Facilities. New York, NY: ASCE, 1984: 534-553.
|
[6] |
HESSHEIMER M F, KLAMERUS E W, LAMBERT L D, et al. Overpressurization test of a 1: 4-scale prestressed concrete containment vessel model: NUREG/CR-6810[R]. Albuquerque: Sandia National Laboratories, 2003.
|
[7] |
HESSHEIMER M F, MATHET E. CSNI international standard problem (ISP): NEA/CSNI/R(2005)5[R]. Paris: OECD Nuclear Energy Agency, 2005.
|
[8] |
GUPTA R, ROSSAT D, DÉROBERT X, et al. Blind comparison of saturation ratio profiles on large RC structures by means of NDT and SFE—Application to the VeRCoRs mock-up[J]. Engineering Structures, 2022, 258: 114057. doi: 10.1016/j.engstruct.2022.114057
|
[9] |
CHARPIN L, NIEPCERON J, CORBIN M, et al. Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark[J]. Nuclear Engineering and Design, 2021, 377: 111136. doi: 10.1016/j.nucengdes.2021.111136
|
[10] |
薛荣军,王洪良,褚濛,等. 预应力安全壳内压作用下的有限元研究[J]. 建筑结构,2018, 48(8): 77-82.
|
[11] |
WU J Y, HAO D D, LI W S, et al. Numerical modeling and simulation of a prestressed concrete containment vessel[J]. Annals of Nuclear Energy, 2018, 121: 269-283. doi: 10.1016/j.anucene.2018.06.039
|
[12] |
YAN J H, LIN Y Z, WANG Z F, et al. Failure mechanism of a prestressed concrete containment vessel in nuclear power plant subjected to accident internal pressure[J]. Annals of Nuclear Energy, 2019, 133: 610-622. doi: 10.1016/j.anucene.2019.07.013
|
[13] |
WANG Z F, YAN J C, LIN Y Z, et al. Study on failure mechanism of prestressed concrete containments following a loss of coolant accident[J]. Engineering Structures, 2020, 202: 109860. doi: 10.1016/j.engstruct.2019.109860
|
[14] |
周磊,钟红,李建波,等. 按不同标准设计的CPR1000安全壳内压易损性分析[J]. 工业建筑,2017, 47(1): 16-20.
|
[15] |
ZHOU L, LI J B, ZHONG H, et al. Fragility comparison analysis of CPR1000 PWR containment subjected to internal pressure[J]. Nuclear Engineering and Design, 2018, 330: 250-264.
|
[16] |
金松,李忠诚,蓝天云,等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程,2020, 41(4): 96-100.
|
[17] |
金松,李鑫波,贡金鑫.严重事故下核电厂安全壳结构概率性能评价[J].工程力学, 2021, 38(06): 103-112.
|
[18] |
JIN S, LI Z C, DONG Z F, et al. A simplified fragility analysis methodology for containment structure subjected to overpressure condition[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104104. doi: 10.1016/j.ijpvp.2020.104104
|
[19] |
JIN S, GONG J X. Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure[J]. Reliability Engineering & System Safety, 2021, 208: 107400.
|
[20] |
MANDAL T K, GHOSH S, PUJARI N N. Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models[J]. Structural Safety, 2016, 58: 11-19. doi: 10.1016/j.strusafe.2015.08.003
|
[21] |
Joint Committee on Structural Safety (JCSS). Probabilistic Model Code: Part 3 – Material Properties:No. JCSS-2001 [R]. Lyngby, Denmark: JCSS, 2001.
|
[22] |
YAO D, GAO G, YANG Q, et al. Mechanical behaviors and internal pressure bearing capacity of nuclear containment using UHPC and ECC: From numerical simulation, machine learning prediction to fragility analysis [J]. Nuclear Engineering and Design, 2024, 429: 113617.
|
[23] |
YANG Q Y, YAN J C, FAN F. Pretest analysis of a prestressed concrete containment 1: 3.2 scale model under thermal-pressure coupling conditions[J]. Nuclear Engineering and Technology, 2023, 55(6): 2069-2087. doi: 10.1016/j.net.2023.03.001
|
[24] |
U. S. Nuclear Regulatory Commission. Containment structural integrity evaluation for internal pressure loadings above design-basis pressure Regulatory guide: Regulatory Guide 1.216[R]. US: U. S. Nuclear Regulatory Commission, 2010.
|
[25] |
HESSHEIMER M F, DAMERON R A. Containment integrity research at Sandia national laboratories-an overview: NUREG/CR-6906[R]. Washington: Division of Fuel, Engineering & Radiological Research, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2006.
|
[26] |
杨青屿. 某预应力安全壳热-压作用下破坏机理分析及试验设计[D]. 哈尔滨: 哈尔滨工业大学,2021. doi: 10.27061/d.cnki.ghgdu.2021.003633.
|
[27] |
JIN S, LI Z C, LAN T Y, et al. Fragility analysis of prestressed concrete containment under severe accident condition[J]. Annals of Nuclear Energy, 2019, 131: 242-256.
|
[28] |
马燕. 某预应力安全壳热-压耦合作用下易损性分析[D]. 哈尔滨: 哈尔滨工业大学,2022.
|