Citation: | Liu Hao, Ma Zaiyong, Lian Qiang, Liu Gangyang, Tan Xubin, Zhang Luteng, Zhou Wenxiong, Pan Liangming. Feasibility Study on Special-shaped Impedance Void Meter for Measuring Void Fraction in Helical Cruciform Rod Bundle Channel[J]. Nuclear Power Engineering, 2025, 46(4): 85-93. doi: 10.13832/j.jnpe.2024.070059 |
[1] |
PETROV Y V, ERYKALOV A N, ONEGIN M S. The fuel cycle of reactor PIK [C]// Argonne National Laboratory. Proceedings of the 24th international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). San Carlos de Bariloche: IAEA, 2002.
|
[2] |
CONBOY T M, MCKRELL T J, Kazimi M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58
|
[3] |
CONBOY T M, MCKRELL T J, KAZIMI M S. Evaluation of helical-cruciform fuel rod assemblies for high-power-density LWRs[J]. Nuclear Technology, 2014, 188(2): 139-153. doi: 10.13182/NT13-104
|
[4] |
SHIRVAN K. Development of optimized core design and analysis methods for high power density BWRs[D]. Cambridge: Massachusetts Institute of Technology, 2013.
|
[5] |
CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111
|
[6] |
XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428
|
[7] |
ZHANG Q, LIU L, XIAo Y, et al. Experimental study on the transverse mixing of 5×5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
|
[8] |
JIANG D Q, ZHANG D L, TIAN W X, et al. Experimental study on flow and heat transfer of medium-prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125312. doi: 10.1016/j.ijheatmasstransfer.2024.125312
|
[9] |
傅俊森,肖瑶,陈硕,等. 19棒束螺旋十字燃料组件临界热流密度实验研究[J]. 核动力工程,2024, 45(3): 132-138.
|
[10] |
丛腾龙,高勇,程毅,等. 螺旋十字燃料组件沸腾传热及燃料元件热力耦合特性研究[J]. 核动力工程,2023, 44(5): 216-222.
|
[11] |
张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
|
[12] |
蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
|
[13] |
PARANJAPE S S. Two-phase flow interfacial structures in a rod bundle geometry[D]. West Lafayette: Purdue University, 2009.
|
[14] |
CHEN S W, LIU Y, HIBIKI T, et al. Experimental study of air–water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 168-181. doi: 10.1016/j.ijheatfluidflow.2011.09.012
|
[15] |
YU B, ZHOU W X, PAN L M, et al. Void fraction measurement of the air-water two-phase flow in the sub-channel of a rod bundle geometry based on an impedance meter[J]. Annals of Nuclear Energy, 2018, 115: 480-486. doi: 10.1016/j.anucene.2018.02.018
|
[16] |
REN Q Y, ZHOU W X, DU S J, et al. Sub-channel flow regime maps in vertical rod bundles with spacer grids[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1138-1152. doi: 10.1016/j.ijheatmasstransfer.2018.01.133
|
[17] |
YE T P, PAN L M, REN Q Y, et al. Experimental study on distribution parameter characteristics in vertical rod bundles[J]. International Journal of Heat and Mass Transfer, 2019, 132: 593-605. doi: 10.1016/j.ijheatmasstransfer.2018.12.008
|
[18] |
CHEN S W, RUAN P S, LIN M S, et al. Experimental investigation on local/global void distribution of air-water two-phase flow in a 3×3 rod bundle channel under low-flow conditions[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108623. doi: 10.1016/j.ijheatfluidflow.2020.108623
|
[19] |
WAN J, GAO L, SUN W, et al. Experimental investigation on effect of rod bowing on subchannel void fraction in 5 × 5 rod bundles[J]. Progress in Nuclear Energy, 2024, 170: 105125. doi: 10.1016/j.pnucene.2024.105125
|
[20] |
XIONG J B, XIE H, DU S J, et al. Experimental measurement of bubbly two-phase flow in a 4x4 rod bundle with wire mesh sensor[J]. Applied Thermal Engineering, 2023, 218: 119294. doi: 10.1016/j.applthermaleng.2022.119294
|
[21] |
GUI M, WANG T, LIU Z H, et al. Void fractions in a rod bundle geometry at high pressure–part Ⅰ: experimental study[J]. International Journal of Multiphase Flow, 2020, 122: 103146. doi: 10.1016/j.ijmultiphaseflow.2019.103146
|
[22] |
REN Q Y, PAN L M, ZHOU W X, et al. Phase distribution characteristics of bubbly flow in 5 × 5 vertical rod bundles with mixing vane spacer grids[J]. Experimental Thermal and Fluid Science, 2018, 96: 451-459. doi: 10.1016/j.expthermflusci.2018.04.002
|
[23] |
Maxwell J C A. A Treatise On Electricity and Magnetism[J]. Nature, 1873, 7(182): 478-480.
|
[24] |
BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(8): 665-679. doi: 10.1002/andp.19354160802
|
[25] |
KANG R Q, XIONG Z Q, GU Z H, et al. Experimental study of swirling flow pattern at the swirler outlet using a Wire-Mesh sensor[J]. Chemical Engineering Science, 2024, 295: 120166. doi: 10.1016/j.ces.2024.120166
|
[26] |
BAO R Q, LIU L, LIU S, et al. Numerical analysis and structural optimization of a DLC coated capacitance wire-mesh sensor for measuring liquid metal-gas two-phase distribution[J]. Annals of Nuclear Energy, 2024, 205: 110590. doi: 10.1016/j.anucene.2024.110590
|
[27] |
GRIFFITHS M J. A scalability study of one-dimensional two-phase flow drift-flux closure relations for use in RELAP5 rod bundles and new, well-scaled low liquid flow rod bundle data[D]. West Lafayette: Purdue University, 2012.
|