Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Chen Jing, Qiu Xinghua, Jiang Hao, Lin Weiqing, Chen Yan, Xu Yong. Research on Prediction Method of In-core Capacity Factor Based on Graph Convolutional Network[J]. Nuclear Power Engineering, 2025, 46(4): 245-252. doi: 10.13832/j.jnpe.2024.070063
Citation: Chen Jing, Qiu Xinghua, Jiang Hao, Lin Weiqing, Chen Yan, Xu Yong. Research on Prediction Method of In-core Capacity Factor Based on Graph Convolutional Network[J]. Nuclear Power Engineering, 2025, 46(4): 245-252. doi: 10.13832/j.jnpe.2024.070063

Research on Prediction Method of In-core Capacity Factor Based on Graph Convolutional Network

doi: 10.13832/j.jnpe.2024.070063
  • Received Date: 2024-07-31
  • Rev Recd Date: 2024-09-11
  • Publish Date: 2025-08-15
  • The distribution of capacity factor of core directly affects the safe operation of the reactor. In order to achieve accurate prediction of capacity factor distribution, the spatial relationship of the distribution of each sensitive segments in the power range detector and the derivation process of the capacity factor physical model are fully considered in the paper, which proposes a graph data structure by the research on the neutron transport matrix, which is suitable for capacity factor distribution prediction, and uses the graph convolutional network (GCN) to predict the capacity factor. Based on the historical data of a second-generation pressurized water reactor unit, analysis of examples is conducted and the result shows that the spatial characteristics of signal of the power range detector can be integrated effectively by the proposed graph data structure. Combining the GCN model to predict two different situations of stable and large fluctuations in the capacity factor, the result show that two different situations of capacity factor can be predicted accurately by GCN model, which solves the problem of unsatisfactory prediction results of traditional time series prediction models in situations under large fluctuations. Therefore, the method proposed in this paper is suitable for prediction of in-core capacity factor, which has a high reference value for improving the safety and reliability of nuclear reactor operation.

     

  • loading
  • [1]
    杨文清,张松文,李军德,等. 压水堆轴向功率重构几何矩阵研究[J]. 自动化仪表,2023, 44(S1): 171-176.
    [2]
    李富,周旭华,王登营,等. 采用堆芯外探测器监测堆内功率分布[J]. 核动力工程,2010, 31(S2): 92-96.
    [3]
    LEE K, KIM C H. The least-squares method for three-dimensional core power distribution monitoring in pressurized water reactors[J]. Nuclear Science and Engineering, 2003, 143(3): 268-280. doi: 10.13182/NSE03-A2335
    [4]
    薛斌,樊治国,李靖,等. 中子传输矩阵研究[J]. 核动力工程,2009, 30(S2): 88-91.
    [5]
    贾健,刘志宏. 基于截面偏差的堆芯功率分布重构方法研究[J]. 原子能科学技术,2017, 51(1): 89-94.
    [6]
    薛志恒,刘志宏,赵晶,等. 基于堆外探测实现堆芯功率重构的扰动搜索法[J]. 原子能科学技术,2019, 53(1): 94-101.
    [7]
    谭思超,李桐,刘永超,等. 关于人工智能在核能领域应用的若干思考[J]. 核动力工程,2023, 44(2): 1-8.
    [8]
    夏虹,李彬,刘建新. 基于RBF神经网络的压水堆堆芯三维功率分布方法研究[J]. 原子能科学技术,2014, 48(4): 698-702.
    [9]
    彭星杰,应栋川,李庆,等. 正则化径向基函数神经网络在堆芯轴向功率分布重构中的应用[J]. 核动力工程,2014, 35(S2): 12-15.
    [10]
    张奥鑫,滕婧,琚贇,等. 基于神经网络的核反应堆堆芯热功率预测[J]. 计算机仿真,2021, 38(10): 455-461.
    [11]
    吕云龙,胡琴,熊俊杰,等. 基于时空注意力卷积模型的超短期风电功率预测[J]. 电网技术,2024, 48(5): 2064-2073.
    [12]
    邬永,王冰,陈玉全,等. 融合精细化气象因素与物理约束的深度学习模型在短期风电功率预测中的应用[J]. 电网技术,2024, 48(4): 1455-1465.
    [13]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017: 1-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return