Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Gao Chang, Chen Xiaoqiang, Pan Dingyi, Liu Baojun, Zeng Qifeng. Numerical Simulation Study of Ion Concentration on Fuel Cladding Surface Based on CRUD Model[J]. Nuclear Power Engineering, 2025, 46(4): 25-34. doi: 10.13832/j.jnpe.2024.080022
Citation: Gao Chang, Chen Xiaoqiang, Pan Dingyi, Liu Baojun, Zeng Qifeng. Numerical Simulation Study of Ion Concentration on Fuel Cladding Surface Based on CRUD Model[J]. Nuclear Power Engineering, 2025, 46(4): 25-34. doi: 10.13832/j.jnpe.2024.080022

Numerical Simulation Study of Ion Concentration on Fuel Cladding Surface Based on CRUD Model

doi: 10.13832/j.jnpe.2024.080022
  • Received Date: 2024-08-08
  • Rev Recd Date: 2024-11-19
  • Publish Date: 2025-08-15
  • In a pressurized water reactor (PWR), the Li/K element in the primary loop coolant will be concentrated in the deposits (CRUD) on the surface of the fuel cladding, which will exacerbate the corrosion of zirconium alloy in cladding materials and have impact on the fuel life and safety performance. Therefore, it is necessary and urgent to carry out related research on the phenomenon. Finite volume method, coupled with the relationship between temperature field, pressure field and concentration field, is applied to establish the numerical calculation model of Li/K element in CRUD structure during concentration (CRUD model), which can simulate the concentration of Li/K element under different working conditions according to the design parameters of thermal and hydrochemical conditions of the reactor core. First of all, the accuracy of the CRUD model was verified by comparing with previous calculation results. Then, based on CRUD model, the influence law of core thermal design parameters (coolant temperature, pressure, heat flux, etc.), primary loop coolant water chemical conditions (Li/K concentration), and CRUD morphological parameters (thickness, porosity, etc.) on the distribution of Li/K ion concentration was analyzed, and a regular relationship which can be used to guide the design of reactor core parameter criteria and the design of fuel cladding material selection criteria was obtained.

     

  • loading
  • [1]
    COHEN P. Heat and mass transfer for boiling in porous deposits with chimneys[J]. American Institute of Chemical Engineers, 1974, 70(138): 71-80.
    [2]
    PAN C N, JONES B G, MACHIELS A J. Concentration levels of solutes in porous deposits with chimneys under wick boiling conditions[J]. Nuclear Engineering and Design, 1987, 99: 317-327. doi: 10.1016/0029-5493(87)90130-0
    [3]
    HENSHAW J, MCGURK J C, SIMS H E, et al. A model of chemistry and thermal hydraulics in PWR fuel crud deposits[J]. Journal of Nuclear Materials, 2006, 353(1-2): 1-11. doi: 10.1016/j.jnucmat.2005.01.028
    [4]
    SHORT M P, HUSSEY D, KENDRICK B K, et al. Multiphysics modeling of porous crud deposits in nuclear reactors[J]. Journal of Nuclear Materials, 2013, 443(1-3): 579-587. doi: 10.1016/j.jnucmat.2013.08.014
    [5]
    HAQ I U, CINOSI N, BLUCK M, et al. Modelling heat transfer and dissolved species concentrations within PWR crud[J]. Nuclear Engineering and Design, 2011, 241(1): 155-162. doi: 10.1016/j.nucengdes.2010.10.018
    [6]
    PARK B G, SEO S, KIM S J, et al. Meso-scale multi-physics full coupling within porous CRUD deposits on nuclear fuel[J]. Journal of Nuclear Materials, 2018, 512: 100-117. doi: 10.1016/j.jnucmat.2018.10.002
    [7]
    刘延,刘晓晶,何辉. 堆芯氧化腐蚀产物沉积层内两相沸腾传热传质特性[J]. 原子能科学技术,2022, 56(8): 1551-1558. doi: 10.7538/yzk.2022.youxian.0391
    [8]
    DESHON J. Modeling PWR fuel corrosion product deposition and growth processes:1009734(2024)[R]. Palo Alto: EPRI, 2004.
    [9]
    VAFAI K. Handbook of porous media[M]. Boca Raton: Taylor & Francis, 2005: 201.
    [10]
    KUBO R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(1): 255. doi: 10.1088/0034-4885/29/1/306
    [11]
    GIERSZEWSKI P, MIKIC B, TODREAS N. Property correlations for lithium, sodium, helium, FLiBe and water in fusion reactor applications: PFC-RR-80-12[R]. Cambridge: Massachusetts Institute of Technology, 1980.
    [12]
    HE M G, ZHANG S, ZHANG Y, et al. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures[J]. Optics Express, 2015, 23(9): 10884-10899. doi: 10.1364/OE.23.010884
    [13]
    FERZIGER J H, PERIĆ M, STREET R L. Computational methods for fluid dynamics[M]. Berlin: Springer, 2002: 196-200.
    [14]
    MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics[M]. Cham: Springer, 2016: 113.
    [15]
    李盛哲. 基于子通道分析的硼输运及CRUD模型开发的数值研究[D]. 上海: 上海交通大学机械与动力工程学院,2019.
    [16]
    PAN C, JONES B G, MACHIELS A J. Wick boiling performance in porous deposits with chimneys[C]//Proceedings of the 23rd National Heat Transfer Conference. Denver: American Society of Mechanical Engineers (ASME), 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return