Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Hu Xiao, Huang Yi, Chen Xiaoliang. Uncertainty Analysis Method for Activation Neutron Spectra Based on Random Sampling[J]. Nuclear Power Engineering, 2025, 46(4): 35-41. doi: 10.13832/j.jnpe.2024.080032
Citation: Hu Xiao, Huang Yi, Chen Xiaoliang. Uncertainty Analysis Method for Activation Neutron Spectra Based on Random Sampling[J]. Nuclear Power Engineering, 2025, 46(4): 35-41. doi: 10.13832/j.jnpe.2024.080032

Uncertainty Analysis Method for Activation Neutron Spectra Based on Random Sampling

doi: 10.13832/j.jnpe.2024.080032
  • Received Date: 2024-08-22
  • Rev Recd Date: 2024-09-29
  • Publish Date: 2025-08-15
  • To improve the accuracy of neutron spectrum measurement via activation method and address the critical issue of uncertainty analysis, this study proposed a random sampling-based uncertainty analysis method integrating experimentally measured activation rates, cross-section covariance, and preset spectra for the SD spectrum unfolding program developed using an iterative method. By developing an iterative method-driven SD spectrum unfolding program, the impacts of activation rates, cross-section covariance, and preset spectra on spectrum unfolding uncertainties were systematically quantified by the system. A multi-factor coupling analysis model was constructed based on the principles of random sampling and validated using neutron spectrum experimental data from the China Experimental Fast Reactor (CEFR). The results demonstrate that: Neutron spectrum uncertainties exhibit non-uniform distribution across the full energy range, with the maximum uncertainty of spectrum unfolding in the thermal region reaching 24%, while uncertainties in the fast region remain below 8%. The preset spectrum dominates the unfolding uncertainties (contributing over 90%), whereas cross-section covariance and activation rates have negligible effects (contributing less than 5%). Compared to traditional methods, the random sampling-based analysis method provides a more comprehensive analysis of uncertainty sources, offering not only a reliable reference for enhancing neutron spectrum measurement accuracy but also serving as an effective tool for evaluating the performance of spectrum unfolding programs.

     

  • loading
  • [1]
    黄迁明,刘斌,陆婷,等. 中子能谱测量中的解谱技术研究进展[J]. 辐射防护,2023, 42(4): 265-279.
    [2]
    HOSSEINI S A. Neutron spectrum unfolding using artificial neural network and modified least square method[J]. Radiation Physics and Chemistry, 2016, 126: 75-84. doi: 10.1016/j.radphyschem.2016.05.010
    [3]
    HEYDARZADE A, KASESAZ Y, MOHAMMADI S. Coupling the SAND-II and MCNPX codes for neutron spectrum unfolding[J]. Journal of Instrumentation, 2018, 13(8): P08010. doi: 10.1088/1748-0221/13/08/P08010
    [4]
    YANG J K, WANG P Q, REN Z G, et al. Comparison of neutron energy spectrum unfolding methods and evaluation of rationality criteria[J]. Nuclear Science and Techniques, 2022, 33(12): 164. doi: 10.1007/s41365-022-01139-2
    [5]
    SEGHOUR A, SEGHOUR F Z. Unfolding neutron energy spectra from foil activation detector measurements with the gold algorithm[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 457(3): 617-626.
    [6]
    MCELORY W N, BERG S, CROCKETT T, et al. Computer-automated iterative method for neutron flux spectra determination by foil activation[R]. New Mexico: Air Force Weapons Laboratory, Research and Technology Division, Air Force Systems Command, Kirtland Air Force Bose, 1967.
    [7]
    BRIESMEISTER J F. MCNP: A General Monte Carlo N-Particle transport code: LA-12625-M[R]. USA: LANL, 1997.
    [8]
    MUIR D W, BOICOURT M R, KAHLER A C, et al. The NJOY nuclear data processing system, version 2016: UR-17-20093[R]. New Mexico: Los Alamos National Laboratory, 2019.
    [9]
    邓勇军. 活化箔方法测量中子能谱[D]. 北京: 中国原子能科学研究院,2006.
    [10]
    吴治华. 原子核物理实验方法[M]. 第二版. 北京: 中国原子能出版社,1997: 7.
    [11]
    施兆民,施朝晖,芦涵林. 核反应截面协方差矩阵计算[J]. 核科学与工程,1990, 10(3): 284-288,276.
    [12]
    BALL M R. Uncertainty analysis in lattice reactor physics calculations[D]. Hamilton: MaMaster University, 2012.
    [13]
    WISESLQUIST W VASILIEV A, FERROUKHI H. Nuclear data uncertainty propagation in a lattice physics code using stochastic sampling: PHYSOR 2012[R]. Illinois: American Nuclear Society, Inc. , 2012.
    [14]
    KLEIN M, GALLNER L, KRZYKACZ-HAUSMANN B, et al. Influence of nuclear data uncertainties on reactor core calculations[J]. Kerntechnik, 2011, 76(3): 174-178. doi: 10.3139/124.110148
    [15]
    QUARTEMONT N J, BICKLEY A A, BEVINS J E. Nuclear data covariance analysis in radiation-transport simulations utilizing SCALE sampler and the IRDFF nuclear data library[J]. IEEE Transactions on Nuclear Science, 2020, 67(3): 482-491. doi: 10.1109/TNS.2020.2970700
    [16]
    DONG D, FANG P, BOCK Y, et al. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B3): B03405.
    [17]
    陈晓亮. 基于探测片活化法的中国实验快堆中子能谱测量实验研究及其应用[D]. 北京: 中国原子能科学研究院,2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return