Citation: | Zhang Xiaoying, Yuan Dewen, Bi Jingliang, Huang Yanping. Solution Method of Flow Field in the Narrow Rectangular Channel Based on Physics-informed Neural Network[J]. Nuclear Power Engineering, 2025, 46(4): 266-272. doi: 10.13832/j.jnpe.2024.080040 |
[1] |
HORNIK K, STINCHCOMBE M, WHITE H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks, 1990, 3(5): 551-560. doi: 10.1016/0893-6080(90)90005-6
|
[2] |
PSICHOGIOS D C, UNGAR L H. A hybrid neural network‐first principles approach to process modeling[J]. AIChE Journal, 1992, 38(10): 1499-1511. doi: 10.1002/aic.690381003
|
[3] |
LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000. doi: 10.1109/72.712178
|
[4] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[5] |
CAI S Z, MAO Z P, WANG Z C, et al. Physics-informed neural networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727-1738. doi: 10.1007/s10409-021-01148-1
|
[6] |
RAO C P, SUN H, LIU Y. Physics-informed deep learning for incompressible laminar flows[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207-212. doi: 10.1016/j.taml.2020.01.039
|
[7] |
JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. doi: 10.1016/j.jcp.2020.109951
|
[8] |
CAO W B, SONG J H, ZHANG W W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36(2): 027134. doi: 10.1063/5.0188665
|
[9] |
CAI S Z, WANG Z C, WANG S F, et al. Physics-informed neural networks for heat transfer problems[J]. Journal of Heat and Mass Transfer, 2021, 143(6): 060801.
|
[10] |
HENNIGH O, NARASIMHAN S, NABIAN M A, et al. NVIDIA SimNetTM: an ai-accelerated multi-physics simulation framework[M]//PASZYNSKI M, KRANZLMÜLLER D, KRZHIZHANOVSKAYA V V, et al. Computational Science–ICCS 2021. Krakow: Springer International Publishing, 2021: 447-461.
|
[11] |
陆至彬,瞿景辉,刘桦,等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报,2021, 72(3): 1496-1503.
|
[12] |
张程宾,陈永平,施明恒,等. 表面粗糙度的分形特征及其对微通道内层流流动的影响[J]. 物理学报,2009, 58(10): 7050-7056. doi: 10.3321/j.issn:1000-3290.2009.10.062
|
[13] |
幸奠川,阎昌琪,曹夏昕,等. 高宽比对矩形窄通道内单相水流动特性的影响机理[J]. 原子能科学技术,2013, 47(1): 43-47. doi: 10.7538/yzk.2013.47.01.0043
|
[14] |
尧少波,何伟峰,陈丽华,等. 融合物理的神经网络方法在流场重建中的应用[J]. 空气动力学学报,2022, 40(5): 30-38. doi: 10.7638/kqdlxxb-2021.0080
|
[15] |
王浩蔓. 基于物理信息神经网络的大地电磁正演研究[D]. 长春: 吉林大学,2022.
|