Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Wang Xueqing, Lyu Huanwen, Yang Hongrun. Study on Diffusion Source Cascade Variance Reduction Method for Monte Carlo Deep-penetration Shielding Calculation[J]. Nuclear Power Engineering, 2025, 46(4): 42-48. doi: 10.13832/j.jnpe.2024.080052
Citation: Wang Xueqing, Lyu Huanwen, Yang Hongrun. Study on Diffusion Source Cascade Variance Reduction Method for Monte Carlo Deep-penetration Shielding Calculation[J]. Nuclear Power Engineering, 2025, 46(4): 42-48. doi: 10.13832/j.jnpe.2024.080052

Study on Diffusion Source Cascade Variance Reduction Method for Monte Carlo Deep-penetration Shielding Calculation

doi: 10.13832/j.jnpe.2024.080052
  • Received Date: 2024-08-30
  • Rev Recd Date: 2024-10-22
  • Publish Date: 2025-08-15
  • This paper proposed the diffusion source cascade variance reduction method for Monte Carlo deep-penetration shielding calculation. The core idea of this method is to obtain the global variance-reducing parameter distribution through the cascade of response relations in multi-layer local phase space. The method first calculates the flux response factors related to space and energy between adjacent phase spaces by the dispersion source. Secondly, it cascades outward from the source space to obtain the global estimated flux distribution. Thirdly, it cascades backward from the count space to obtain the importance distribution. Finally it generates the consistent source bias parameters and weight window parameters. This method obtains the variance-reducing parameters through local Monte Carlo pre-calculation, so there is no need for iteration, which can effectively reduce the iteration time cost and improve the calculation efficiency. This method is applied to the single detector problem and the multi-detector problem. The calculated values are in good compliance with the Monte Carlo direct calculation, and the quality factor is improved by about 2~4 orders of magnitude. At the same time, the results are compared with those of the typical variance-reducing methods MAGIC and CADIS. The numerical results show that the overall variance-reducing effect of the diffusion source cascade method is better, and it can meet the requirements of the deep-penetration shielding calculation.

     

  • loading
  • [1]
    邱有恒,邓力,李百文,等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术,2013, 47(S2): 673-677.
    [2]
    聂星辰,李佳,赵平辉,等. 深穿透屏蔽计算中MCNP减方差技巧应用及比较[J]. 核电子学与探测技术,2016, 36(7): 729-733,741. doi: 10.3969/j.issn.0258-0934.2016.07.016
    [3]
    COOPER M A, LARSEN E W. Automated weight windows for global Monte Carlo particle transport calculations[J]. Nuclear Science and Engineering, 2001, 137(1): 1-13. doi: 10.13182/NSE00-34
    [4]
    BECKER T L. Hybrid Monte Carlo/deterministic methods for radiation shielding problems[D]. Michigan: University of Michigan, 2009.
    [5]
    BECKER T L, LARSEN E W. The application of weight windows to "Global" Monte Carlo problems[C]//International Conference on Mathematics, Computational Methods & Reactor Physics. New York: Saratoga Springs, 2009.
    [6]
    WAGNER J C. Acceleration of Monte Carlo shielding calculations with an automated variance reduction technique and parallel processing[D]. Pennsylvania: Pennsylvania State University, 1997.
    [7]
    WAGNER J C, HAGHIGHAT A. Automatic variance reduction for Monte Carlo shielding calculations with the discrete ordinates adjoint function[C]//Proceedings of the Joint Int Conf on Mathematical Methods and Supercomputing for Nuclear Applications. New York: Saratoga Springs, 1997.
    [8]
    WAGNER J C, HAGHIGHAT A. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function[J]. Nuclear Science and Engineering, 1998, 128(2): 186-208. doi: 10.13182/NSE98-2
    [9]
    WAGNER J C. An automated deterministic variance reduction generator for Monte Carlo shielding applications[C]//Proceedings of the American Nuclear Society /Radiation Protection & Shielding Division 12th Biennial RPSD Topical Meeting. New Mexico: Nuclear Science and Technology Division, 2002.
    [10]
    WAGNER J C, BLAKEMAN E D, PEPLOW D E. Forward-weighted CADIS method for variance reduction of Monte Carlo calculations of distributions and multiple localized quantities[C]//Proceedings of the International Conference on Mathematics, Computational Methods & Reactor Physics. New York: Saratoga Springs, 2009.
    [11]
    BOOTH T E. Automatic importance estimation in forward Monte Carlo calculations[J]. Transactions of the American Nuclear Society, 1982, 41: 308-309.
    [12]
    BOOTH T E. Weight window/importance generator for Monte Carlo streaming problems: LA-UR-83-1138[R]. New Mexico: Los Alamos National Laboratory, 1983.
    [13]
    VAN WIJK A, VAN DEN EYNDE G, HOOGENBOOM J E. An easy to implement global variance reduction procedure for MCNP[J]. Annals of Nuclear Energy, 2011, 38(11): 2496-2503. doi: 10.1016/j.anucene.2011.07.037
    [14]
    DAVIS A, TURNER A. Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER[J]. Fusion Engineering and Design, 2011, 86(9-11): 2698-2700. doi: 10.1016/j.fusengdes.2011.01.059
    [15]
    LEPPÄNEN J. Response matrix method–based importance solver and variance reduction scheme in the serpent 2 Monte Carlo code[J]. Nuclear Technology, 2019, 205(11): 1416-1432. doi: 10.1080/00295450.2019.1603710
    [16]
    郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学,2021.
    [17]
    REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark: NUREG/CR--6453[R]. Washington: Nuclear Regulatory Commission, 1998.
    [18]
    郑琪,沈炜,贺清明,等. 基于NECP-MCX的蒙特卡罗-确定论耦合及权窗网格粗化方法研究[J]. 核动力工程,2021, 42(2): 202-207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return