Citation: | Li Xiaobo, He Yuan, Niu Fenglei. Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054 |
[1] |
ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
|
[2] |
TIAN S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480℃[J]. Oxidation of Metals, 2020, 93(1): 183-194.
|
[3] |
LI H, ZHU H P, LIANG R X, et al. Numerical study of solid-state oxygen control bypass performance and corrosion distribution in a LBE flow loop[J]. Annals of Nuclear Energy, 2024, 199: 110341. doi: 10.1016/j.anucene.2024.110341
|
[4] |
HOSEMANN P, FRAZER D, FRATONI M, et al. Materials selection for nuclear applications: Challenges and opportunities[J]. Scripta Materialia, 2018, 143: 181-187. doi: 10.1016/j.scriptamat.2017.04.027
|
[5] |
杜晓超. 液态金属中的固态氧控与相关问题研究[D]. 北京: 华北电力大学,2017.
|
[6] |
WANG Y F, LI X B, LIANG R X, et al. Simulation of a solid-phase oxygen control scheme in lead-bismuth eutectic system[J]. Nuclear Engineering and Design, 2022, 394: 111821. doi: 10.1016/j.nucengdes.2022.111821
|
[7] |
FENG W P, ZHANG X, CHEN H L. Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic[J]. Nuclear Engineering and Technology, 2020, 52(5): 908-917. doi: 10.1016/j.net.2019.10.026
|
[8] |
FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
|
[9] |
MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
|
[10] |
NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
|
[11] |
SUGAWARA T, KATANO R, TSUJIMOTO K. Impact of impurity in transmutation cycle on neutronics design of revised accelerator-driven system[J]. Annals of Nuclear Energy, 2018, 111: 449-459. doi: 10.1016/j.anucene.2017.09.017
|
[12] |
RODRÍGUEZ I M, HERNÁNDEZ-SOLÍS A, MESSAOUDI N, et al. The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation[J]. Nuclear Engineering and Technology, 2020, 52(10): 2274-2284. doi: 10.1016/j.net.2020.04.004
|
[13] |
LI C, FANG X D, WANG Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern[J]. Corrosion Science, 2021, 180: 109214. doi: 10.1016/j.corsci.2020.109214
|
[14] |
MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
|
[15] |
ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012
|
[16] |
LI X B, LIANG R X, WANG Y F, et al. An optimized numerical method on corrosion in the non–isothermal lead–bismuth eutectic loops with solid–phase oxygen control system[J]. Annals of Nuclear Energy, 2022, 172: 109084. doi: 10.1016/j.anucene.2022.109084
|
[17] |
BERGER F P, HAU K F F L. Mass transfer in turbulent pipe flow measured by the electrochemical method[J]. International Journal of Heat and Mass Transfer, 1977, 20(11): 1185-1194. doi: 10.1016/0017-9310(77)90127-2
|
[18] |
LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
|
[19] |
MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
|
[20] |
ZHANG J, LI N. Oxidation mechanism of steels in liquid–lead alloys[J]. Oxidation of Metals, 2005, 63(5-6): 353-381. doi: 10.1007/s11085-005-4392-3
|
[21] |
戎利建,张玉妥,陆善平,等. 铅与铅铋共晶合金手册-性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社,2014: 31-128.
|
[22] |
SUBBOTIN V I. Heat exchange and hydrodynamics in channels of complex geometry[C]//International Heat Transfer Conference 5. Tokyo: IHTC, 1974: 89-104.
|