Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Li Xiaobo, He Yuan, Niu Fenglei. Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054
Citation: Li Xiaobo, He Yuan, Niu Fenglei. Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054

Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding

doi: 10.13832/j.jnpe.2024.080054
  • Received Date: 2024-08-30
  • Rev Recd Date: 2024-10-20
  • Publish Date: 2025-08-15
  • To investigate the growth characteristics of the oxide scale in the fuel cladding of the lead-bismuth eutectic cooled Accelerator-driven Subcritical System (ADS), and to analyze the heat transfer in the fuel cladding with an oxide scale, the paper proposes a growth and dissolution/deposition model for ADS cladding oxide scale and couple it with the computational fluid dynamics (CFD) method, so as to investigate and realize the simulation of cladding oxide scale growth and fuel rod temperature in the presence of dissolution/deposition. The results of study on fuel rod heat transfer and cladding surface oxidation and dissolution/precipitation of our independently designed multi-beam ADS demonstrate that: the experimental data show a high level of agreement at elevated oxygen concentrations; the maximum oxide scale thickness and dissolution thickness are observed in the high-temperature region of the active zone within the core, while the maximum deposition thickness is in its inlet; the oxide scale reached a thickness of approximately 65 μm after 10000 h, with a maximum increase in temperature difference between the cladding inner and outer surface of 12.20 K. Therefore, ADS fuel cladding surface oxide scale growth model and its numerical calculation method, as proposed in this study, are capable of calculating the fuel rod temperatures for the fuel cladding with oxide scale in the flow liquid lead-bismuth eutectic environment.

     

  • loading
  • [1]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [2]
    TIAN S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480℃[J]. Oxidation of Metals, 2020, 93(1): 183-194.
    [3]
    LI H, ZHU H P, LIANG R X, et al. Numerical study of solid-state oxygen control bypass performance and corrosion distribution in a LBE flow loop[J]. Annals of Nuclear Energy, 2024, 199: 110341. doi: 10.1016/j.anucene.2024.110341
    [4]
    HOSEMANN P, FRAZER D, FRATONI M, et al. Materials selection for nuclear applications: Challenges and opportunities[J]. Scripta Materialia, 2018, 143: 181-187. doi: 10.1016/j.scriptamat.2017.04.027
    [5]
    杜晓超. 液态金属中的固态氧控与相关问题研究[D]. 北京: 华北电力大学,2017.
    [6]
    WANG Y F, LI X B, LIANG R X, et al. Simulation of a solid-phase oxygen control scheme in lead-bismuth eutectic system[J]. Nuclear Engineering and Design, 2022, 394: 111821. doi: 10.1016/j.nucengdes.2022.111821
    [7]
    FENG W P, ZHANG X, CHEN H L. Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic[J]. Nuclear Engineering and Technology, 2020, 52(5): 908-917. doi: 10.1016/j.net.2019.10.026
    [8]
    FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
    [9]
    MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [10]
    NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
    [11]
    SUGAWARA T, KATANO R, TSUJIMOTO K. Impact of impurity in transmutation cycle on neutronics design of revised accelerator-driven system[J]. Annals of Nuclear Energy, 2018, 111: 449-459. doi: 10.1016/j.anucene.2017.09.017
    [12]
    RODRÍGUEZ I M, HERNÁNDEZ-SOLÍS A, MESSAOUDI N, et al. The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation[J]. Nuclear Engineering and Technology, 2020, 52(10): 2274-2284. doi: 10.1016/j.net.2020.04.004
    [13]
    LI C, FANG X D, WANG Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern[J]. Corrosion Science, 2021, 180: 109214. doi: 10.1016/j.corsci.2020.109214
    [14]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [15]
    ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012
    [16]
    LI X B, LIANG R X, WANG Y F, et al. An optimized numerical method on corrosion in the non–isothermal lead–bismuth eutectic loops with solid–phase oxygen control system[J]. Annals of Nuclear Energy, 2022, 172: 109084. doi: 10.1016/j.anucene.2022.109084
    [17]
    BERGER F P, HAU K F F L. Mass transfer in turbulent pipe flow measured by the electrochemical method[J]. International Journal of Heat and Mass Transfer, 1977, 20(11): 1185-1194. doi: 10.1016/0017-9310(77)90127-2
    [18]
    LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
    [19]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [20]
    ZHANG J, LI N. Oxidation mechanism of steels in liquid–lead alloys[J]. Oxidation of Metals, 2005, 63(5-6): 353-381. doi: 10.1007/s11085-005-4392-3
    [21]
    戎利建,张玉妥,陆善平,等. 铅与铅铋共晶合金手册-性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社,2014: 31-128.
    [22]
    SUBBOTIN V I. Heat exchange and hydrodynamics in channels of complex geometry[C]//International Heat Transfer Conference 5. Tokyo: IHTC, 1974: 89-104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (15) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return