Advance Search
Volume 46 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
Shi Danyi, Gao Xinli, Guo Zhangpeng, Gao Ge. Research on PIRT Automatic Generation Method based on Deep Learning Algorithm[J]. Nuclear Power Engineering, 2025, 46(4): 282-291. doi: 10.13832/j.jnpe.2024.080056
Citation: Shi Danyi, Gao Xinli, Guo Zhangpeng, Gao Ge. Research on PIRT Automatic Generation Method based on Deep Learning Algorithm[J]. Nuclear Power Engineering, 2025, 46(4): 282-291. doi: 10.13832/j.jnpe.2024.080056

Research on PIRT Automatic Generation Method based on Deep Learning Algorithm

doi: 10.13832/j.jnpe.2024.080056
  • Received Date: 2024-08-30
  • Rev Recd Date: 2024-11-05
  • Publish Date: 2025-08-15
  • The Best Estimate Plus Uncertainty (BEPU) analysis method is one of the main approaches for nuclear safety review. However, conducting sensitivity and uncertainty analyses with best-estimate code requires high calculation costs. Artificial intelligence-based surrogate models can significantly improve analytical efficiency. In this paper, the steam generator tube rupture (SGTR) accident in a nuclear power plant is used as a case study. A surrogate model is established using a deep neural network algorithm, coupled with the sensitivity and uncertainty analysis code DAKOTA. Based on accident acceptance criteria, accident input and output variables are identified, and Sobol sensitivity indicator is used for sensitivity analysis. The analysis results provide an importance ranking of input parameters based on sensitivity indicator, and a secondary-ranked Phenomena Identification Ranhing Table (PIRT) is generated. The study demonstrates that the DNN-based surrogate model can accurately predict the variation trends of critical safety parameters, can be used for sensitivity analysis of these parameters to obtain importance ranking of parameters, and can automatically generate a PIRT for importance ranking of parameters.

     

  • loading
  • [1]
    余红星,武铃珺,邓纯锐,等. 概率安全评价在核能安全分析领域的应用和发展[J]. 核动力工程,2020, 41(6): 1-7.
    [2]
    孙微,庄少欣,安婕铷,等. 基于TRACE程序的大破口BEPU分析方法在独立审核计算中的应用[J]. 原子能科学技术,2017, 51(7): 1225-1231. doi: 10.7538/yzk.2017.51.07.1225
    [3]
    D' AURIA F, CAMARGO C, MAZZANTINI O. The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors[J]. Nuclear Engineering and Design, 2012, 248: 317-328. doi: 10.1016/j.nucengdes.2012.04.002
    [4]
    陆雅哲,李峰,程坤,等. 华龙一号核电厂非失水事故PIRT表研究[J]. 科技视界,2021(10): 87-89.
    [5]
    PARK H M, LEE J H, CHOI C, et al. Development of a phenomena identification and ranking table (PIRT) for intermediate break loss-of-coolant accident in PWRs[J]. Nuclear Engineering and Technology, 2025, 57(1): 103141. doi: 10.1016/j.net.2024.08.010
    [6]
    夏凡. 基于深度学习的反应堆核设计软件不确定性分析方法研究[D]. 哈尔滨: 哈尔滨工程大学,2022.
    [7]
    KANG D G. Comparison of statistical methods and deterministic sensitivity studies for investigation on the influence of uncertainty parameters: application to LBLOCA[J]. Reliability Engineering & System Safety, 2020, 203: 107082.
    [8]
    王鹤茗. 基于神经网络的压水堆燃耗及堆芯功率分布预测[D]. 哈尔滨: 哈尔滨工业大学,2022.
    [9]
    贺婷,周宁,吴啸宇. 基于深度全连接神经网络的储层有效砂体厚度预测[J]. 吉林大学学报(地球科学版),2023, 53(4): 1262-1274.
    [10]
    胡伟晨,刘建全,赵鹏程,等. 基于RELAP5的蒸汽发生器传热管断裂事故分析[J]. 核科学与工程,2022, 42(2): 398-407. doi: 10.3969/j.issn.0258-0918.2022.02.022
    [11]
    贾斌,吴晗,乔雪冬,等. 基于RELAP5的大功率非能动核电厂SGTR事故分析研究[J]. 核科学与工程,2016, 36(5): 683-692. doi: 10.3969/j.issn.0258-0918.2016.05.018
    [12]
    方俊,吴楠,祁婷. RELAP5程序对AP1000核电厂SGTR事故的分析能力研究[J]. 核动力工程,2016, 37(3): 70-74.
    [13]
    韩壮,马杰,周刚,等. 基于DNN与PCA的核动力装置故障诊断方法研究[J]. 兵器装备工程学报,2022, 43(11): 147-153. doi: 10.11809/bqzbgcxb2022.11.021
    [14]
    王晨剑. 基于深度学习的高光谱图像解混方法[D]. 武汉: 华中科技大学,2019.
    [15]
    李树勋,胡迎港,李成,等. 基于代理模型的轴流式调节阀阀体型线优化[J]. 华南理工大学学报(自然科学版),2023, 51(3): 41-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return