Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Jin Shuwu, Li Zewen, Zhou Guofeng, Hu Lunbao, Li Yuanyuan, Lu Zhaohui. Research and Analysis on the Performance of Differential Transformer Type Rod Position Detector[J]. Nuclear Power Engineering, 2025, 46(5): 180-186. doi: 10.13832/j.jnpe.2024.09.0002
Citation: Jin Shuwu, Li Zewen, Zhou Guofeng, Hu Lunbao, Li Yuanyuan, Lu Zhaohui. Research and Analysis on the Performance of Differential Transformer Type Rod Position Detector[J]. Nuclear Power Engineering, 2025, 46(5): 180-186. doi: 10.13832/j.jnpe.2024.09.0002

Research and Analysis on the Performance of Differential Transformer Type Rod Position Detector

doi: 10.13832/j.jnpe.2024.09.0002
  • Received Date: 2024-09-18
  • Rev Recd Date: 2025-01-13
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • This study analyzes the causes of the rod position jump caused by the gourd-shaped waveform in induction voltage of the secondary A-code coil of the rod position detector, and proposes a solution to improve the performance of the rod position detector. Using a 1/2 calculation model, the secondary A-code coil was split and reconfigured. The study found that due to the placement of the secondary A-code coil #1 at the end of the primary coil, it is significantly affected by the large leakage flux at the primary coil end. This results in a relatively low induced voltage in the coil #1, which cannot effectively offset the induced voltage in the differentially connected secondary A-code coil #3. Consequently, a substantial residual voltage remains in the circuit at the zero-position voltage. To solve this problem, this paper proposes to increase the number of turns of the the secondary A-code coil #1 to compensate for the leakage flux at the primary coil end. This solution was verified through numerical calculation and prototype test. The results show that when the number of turns of secondary A-code coil #1 is more than 1.24 times, the small gourd-shaped waveform can be eliminated, the rod position jump caused by the small gourd-shaped is avoided, and the performance of the rod position detector is improved.

     

  • loading
  • [1]
    白冰, 周建明, 吕永红. 压水堆核电站棒位探测器样机设计及试验研究[J]. 核电子学与探测技术, 2013, 33(12): 1515-1518, 1556. doi: 10.3969/j.issn.0258-0934.2013.12.020
    [2]
    雷晴. CPR1000、AP1000棒位指示和监测系统浅析[J]. 核动力工程, 2009, 30(S2): 45-48.
    [3]
    张艺璇, 徐奇伟, 唐健凯, 等. 反应堆用新型自感式棒位探测器涡流效应分析[J]. 核动力工程, 2024, 45(1): 156-163.
    [4]
    蒋跃元, 孙忠智. 多编码棒磁敏式控制棒位置探测器[J]. 核电子学与探测技术, 2006, 26(3): 284-287, 295. doi: 10.3969/j.issn.0258-0934.2006.03.008
    [5]
    代前国, 周新志. 大位移磁致伸缩传感器的弹性波建模与分析[J]. 传感技术学报, 2013, 26(2): 195-199. doi: 10.3969/j.issn.1004-1699.2013.02.011
    [6]
    高龙将, 唐健凯, 付国忠, 等. 基于分段线圈的多线圈电感式棒位探测器棒位解算方法研究[J]. 核动力工程, 2023, 44(S2): 166-170.
    [7]
    胡晓英. AP1000和C系列棒位探测器优劣分析[J]. 中国仪器仪表, 2014(5): 51-54. doi: 10.3969/j.issn.1005-2852.2014.05.009
    [8]
    李家群, 侯孝宗, 毛俊隽. 浅析差动变压器式传感器的几种测量方法[J]. 水利水文自动化, 2008(3): 40-43, 50.
    [9]
    贾惠霞, 王健, 张娟. 差动变压器式位移传感器零位电压研究[J]. 仪表技术与传感器, 2015(2): 82-84. doi: 10.3969/j.issn.1002-1841.2015.02.026
    [10]
    周诗光, 卢才华. 秦山一期棒位探测器的改进[J]. 核电子学与探测技术, 2008, 28(1): 93-95. doi: 10.3969/j.issn.0258-0934.2008.01.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (25) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return