Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Yin Xianpeng, Chen Da. Evaluation of Irradiation Displacement Damage and Radioactivity of High Entropy Alloys under Typical Neutron Energy Spectrum[J]. Nuclear Power Engineering, 2025, 46(5): 161-170. doi: 10.13832/j.jnpe.2024.09.0010
Citation: Yin Xianpeng, Chen Da. Evaluation of Irradiation Displacement Damage and Radioactivity of High Entropy Alloys under Typical Neutron Energy Spectrum[J]. Nuclear Power Engineering, 2025, 46(5): 161-170. doi: 10.13832/j.jnpe.2024.09.0010

Evaluation of Irradiation Displacement Damage and Radioactivity of High Entropy Alloys under Typical Neutron Energy Spectrum

doi: 10.13832/j.jnpe.2024.09.0010
  • Received Date: 2024-09-29
  • Accepted Date: 2025-01-06
  • Rev Recd Date: 2025-01-02
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • The structural materials in nuclear reactors are subjected to neutron irradiation, which leads to lattice displacement damage and neutron activation. These two neutron irradiation effects are correlated with the material's elemental composition, neutron fluence, and irradiation energy spectrum. This study focuses on high-entropy alloys, employing Monte Carlo neutronics calculation methods to evaluate radioactivity levels, equivalent dose rates, displacement damage, and helium production in three typical reactor spectra (pressurized water reactor, fast reactor, and fusion reactor). The results demonstrate that compared with 15-15Ti austenitic stainless steel and Eurofer97 reduced-activation steel, both FeCoNiCr and NbZrTiV high-entropy alloys exhibit higher neutron-induced radioactivity. These alloys show greater displacement damage efficiency in fast reactor spectra but relatively lower helium production. Future research should focus on targeted optimization of elemental compositions in high-entropy alloys according to specific service environment, with particular emphasis on minimizing easily activated elements.

     

  • loading
  • [1]
    ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12-19. doi: 10.1016/S1369-7021(09)70294-9
    [2]
    GILBERT M R, EADE T, REY T, et al. Waste implications from minor impurities in European DEMO materials[J]. Nuclear Fusion, 2019, 59(7): 076015. doi: 10.1088/1741-4326/ab154e
    [3]
    U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2015; Magnetic Fusion Plants: CCFE-R(16)36[R]. Abingdon: Culham Centre for Fusion Energy, 2016.
    [4]
    吴青彪, 王庆斌, 吴靖民, 等. Study on induced radioactivity of China Spallation Neutron Source[J]. 中国物理C, 2011, 35(06): 596-602.
    [5]
    GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature reviews materials, 2019, 4(8): 515-534. doi: 10.1038/s41578-019-0121-4
    [6]
    U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (FBR focus): UKAEA-R(15)33[R]. Abingdon: Culham Science Centre, 2015.
    [7]
    U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (PWR focus): UKAEA-R(15)31[R]. Abingdon: Culham Science Centre, 2015.
    [8]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced engineering materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567
    [9]
    CHEN D, TONG Y, LI H, et al. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation[J]. Journal of Nuclear Materials, 2018, 501: 208-216. doi: 10.1016/j.jnucmat.2018.01.041
    [10]
    SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. doi: 10.1557/jmr.2018.153
    [11]
    LIU C, MA H L, FAN P, et al. Cavity swelling of 15-15Ti steel at high doses by ion irradiation[J]. Materials, 2024, 17(4): 925. doi: 10.3390/ma17040925
    [12]
    KYTKA M, BRUMOVSKY M, FALCNIK M. Irradiation embrittlement characterization of the EUROFER 97 material[J]. Journal of Nuclear Materials, 2011, 409(2): 147-152. doi: 10.1016/j.jnucmat.2010.09.016
    [13]
    BASEM A, HASSAN M A, ELKADY O A, et al. Characterization of FeCoNiCr high-entropy alloys manufactured by powder metallurgy technique[J]. Journal of Materials Research and Technology, 2024, 30: 88-100. doi: 10.1016/j.jmrt.2024.03.054
    [14]
    SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215. doi: 10.1016/j.actamat.2018.03.065
    [15]
    AHDIDA C, BOZZATO D, CALZOLARI D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253
    [16]
    BATTISTONI G, BOEHLEN T, CERUTTI F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007
    [17]
    CETNAR J. General solution of Bateman equations for nuclear transmutations[J]. Annals of Nuclear Energy, 2006, 33(7): 640-645. doi: 10.1016/j.anucene.2006.02.004
    [18]
    PELLICCIONI M. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code[J]. Radiation Protection Dosimetry, 2000, 88(4): 279-297. doi: 10.1093/oxfordjournals.rpd.a033046
    [19]
    CHEN S L, BERNARD D, TAMAGNO P, et al. Calculation and verification of neutron irradiation damage with differential cross sections[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 456: 120-132.
    [20]
    WAS G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. New York: Springer, 2016: 83.
    [21]
    SUBLET J C, EASTWOOD J W, MORGAN J G, et al. FISPACT-II: an advanced simulation system for activation, transmutation and material modelling[J]. Nuclear Data Sheets, 2017, 139: 77-137. doi: 10.1016/j.nds.2017.01.002
    [22]
    GILBERT M R, FLEMING M, SUBLET J-C. Automated inventory and material science scoping calculations under fission and fusion conditions [J]. Nuclear Engineering and Technology, 2017, 49(6): 1346-53.
    [23]
    Firpo G, Viberti C M, Ferrari A, et al. Residual activity evaluation: a benchmark between ANITA, FISPACT, FLUKA and PHITS codes[C]//EPJ Web of Conferences. Les Ulis: EDP Sciences, 2017.
    [24]
    PLOMPEN A J, CABELLOS O, DE SAINT JEAN C, et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3 [J]. The European Physical Journal A, 2020, 56(7): 1-108.
    [25]
    国家环境保护局. 放射性废物的分类: GB 9133-1995[S]. 北京: 中国标准出版社, 1995: 167.
    [26]
    FEDERICI G, DOERNER R, LORENZETTO P, et al. Beryllium as a plasma-facing material for near-term fusion devices[J]. Comprehensive Nuclear Materials, 2012, 4: 621-666.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (17) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return