| Citation: | Yin Xianpeng, Chen Da. Evaluation of Irradiation Displacement Damage and Radioactivity of High Entropy Alloys under Typical Neutron Energy Spectrum[J]. Nuclear Power Engineering, 2025, 46(5): 161-170. doi: 10.13832/j.jnpe.2024.09.0010 |
| [1] |
ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12-19. doi: 10.1016/S1369-7021(09)70294-9
|
| [2] |
GILBERT M R, EADE T, REY T, et al. Waste implications from minor impurities in European DEMO materials[J]. Nuclear Fusion, 2019, 59(7): 076015. doi: 10.1088/1741-4326/ab154e
|
| [3] |
U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2015; Magnetic Fusion Plants: CCFE-R(16)36[R]. Abingdon: Culham Centre for Fusion Energy, 2016.
|
| [4] |
吴青彪, 王庆斌, 吴靖民, 等. Study on induced radioactivity of China Spallation Neutron Source[J]. 中国物理C, 2011, 35(06): 596-602.
|
| [5] |
GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nature reviews materials, 2019, 4(8): 515-534. doi: 10.1038/s41578-019-0121-4
|
| [6] |
U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (FBR focus): UKAEA-R(15)33[R]. Abingdon: Culham Science Centre, 2015.
|
| [7] |
U.K. Atomic Energy Authority, Culham Science Centre. Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (PWR focus): UKAEA-R(15)31[R]. Abingdon: Culham Science Centre, 2015.
|
| [8] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced engineering materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567
|
| [9] |
CHEN D, TONG Y, LI H, et al. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation[J]. Journal of Nuclear Materials, 2018, 501: 208-216. doi: 10.1016/j.jnucmat.2018.01.041
|
| [10] |
SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. doi: 10.1557/jmr.2018.153
|
| [11] |
LIU C, MA H L, FAN P, et al. Cavity swelling of 15-15Ti steel at high doses by ion irradiation[J]. Materials, 2024, 17(4): 925. doi: 10.3390/ma17040925
|
| [12] |
KYTKA M, BRUMOVSKY M, FALCNIK M. Irradiation embrittlement characterization of the EUROFER 97 material[J]. Journal of Nuclear Materials, 2011, 409(2): 147-152. doi: 10.1016/j.jnucmat.2010.09.016
|
| [13] |
BASEM A, HASSAN M A, ELKADY O A, et al. Characterization of FeCoNiCr high-entropy alloys manufactured by powder metallurgy technique[J]. Journal of Materials Research and Technology, 2024, 30: 88-100. doi: 10.1016/j.jmrt.2024.03.054
|
| [14] |
SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215. doi: 10.1016/j.actamat.2018.03.065
|
| [15] |
AHDIDA C, BOZZATO D, CALZOLARI D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253
|
| [16] |
BATTISTONI G, BOEHLEN T, CERUTTI F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007
|
| [17] |
CETNAR J. General solution of Bateman equations for nuclear transmutations[J]. Annals of Nuclear Energy, 2006, 33(7): 640-645. doi: 10.1016/j.anucene.2006.02.004
|
| [18] |
PELLICCIONI M. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code[J]. Radiation Protection Dosimetry, 2000, 88(4): 279-297. doi: 10.1093/oxfordjournals.rpd.a033046
|
| [19] |
CHEN S L, BERNARD D, TAMAGNO P, et al. Calculation and verification of neutron irradiation damage with differential cross sections[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 456: 120-132.
|
| [20] |
WAS G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. New York: Springer, 2016: 83.
|
| [21] |
SUBLET J C, EASTWOOD J W, MORGAN J G, et al. FISPACT-II: an advanced simulation system for activation, transmutation and material modelling[J]. Nuclear Data Sheets, 2017, 139: 77-137. doi: 10.1016/j.nds.2017.01.002
|
| [22] |
GILBERT M R, FLEMING M, SUBLET J-C. Automated inventory and material science scoping calculations under fission and fusion conditions [J]. Nuclear Engineering and Technology, 2017, 49(6): 1346-53.
|
| [23] |
Firpo G, Viberti C M, Ferrari A, et al. Residual activity evaluation: a benchmark between ANITA, FISPACT, FLUKA and PHITS codes[C]//EPJ Web of Conferences. Les Ulis: EDP Sciences, 2017.
|
| [24] |
PLOMPEN A J, CABELLOS O, DE SAINT JEAN C, et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3 [J]. The European Physical Journal A, 2020, 56(7): 1-108.
|
| [25] |
国家环境保护局. 放射性废物的分类: GB 9133-1995[S]. 北京: 中国标准出版社, 1995: 167.
|
| [26] |
FEDERICI G, DOERNER R, LORENZETTO P, et al. Beryllium as a plasma-facing material for near-term fusion devices[J]. Comprehensive Nuclear Materials, 2012, 4: 621-666.
|