| Citation: | Zhang Chunbo, Hu Zongwen, Meng Zhaoming, Dong Chuanchang, He Gening, Li Donghui. Topology Optimization Method for Bionic Fins Based on a Natural Convection Substitution Model[J]. Nuclear Power Engineering, 2025, 46(5): 76-83. doi: 10.13832/j.jnpe.2024.09.0016 |
| [1] |
ADHIKARI R C, WOOD D H, PAHLEVANI M. Optimizing rectangular fins for natural convection cooling using CFD[J]. Thermal Science and Engineering Progress, 2020, 17: 100484. doi: 10.1016/j.tsep.2020.100484
|
| [2] |
LEE Y J, KIM S J. Thermal optimization of the pin-fin heat sink with variable fin density cooled by natural convection[J]. Applied Thermal Engineering, 2021, 190: 116692. doi: 10.1016/j.applthermaleng.2021.116692
|
| [3] |
EL GHANDOURI I, EL MAAKOUL A, SAADEDDINE S, et al. Design and numerical investigations of natural convection heat transfer of a new rippling fin shape[J]. Applied Thermal Engineering, 2020, 178: 115670. doi: 10.1016/j.applthermaleng.2020.115670
|
| [4] |
ZHANG K, LI M J, WANG F L, et al. Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119315. doi: 10.1016/j.ijheatmasstransfer.2020.119315
|
| [5] |
POLLINI N, SIGMUND O, ANDREASEN C S, et al. A “poor man’s” approach for high-resolution three-dimensional topology design for natural convection problems[J]. Advances in Engineering Software, 2020, 140: 102736. doi: 10.1016/j.advengsoft.2019.102736
|
| [6] |
ALEXANDERSEN J, AAGE N, ANDREASEN C S, et al. Topology optimisation for natural convection problems[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3): 699-721.
|
| [7] |
ALEXANDERSEN J, SIGMUND O, AAGE N. Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection[J]. International Journal of Heat and Mass Transfer, 2016, 100: 876-891. doi: 10.1016/j.ijheatmasstransfer.2016.05.013
|
| [8] |
SEE Y S, HO J Y, LEONG K C, et al. Experimental investigation of a topology-optimized phase change heat sink optimized for natural convection[J]. Applied Energy, 2022, 314: 118984. doi: 10.1016/j.apenergy.2022.118984
|
| [9] |
LI H L, LAN D Y, ZHANG X M, et al. Investigation of the parameter-dependence of topology-optimized heat sinks in natural convection[J]. Heat Transfer Engineering, 2022, 43(11): 922-936. doi: 10.1080/01457632.2021.1919972
|
| [10] |
YIN L Z, ANANTHASURESH G K. A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms[J]. Sensors and Actuators A: Physical, 2002, 97-98: 599-609.
|
| [11] |
YOON G H, KIM Y Y. The element connectivity parameterization formulation for the topology design optimization of multiphysics systems[J]. International Journal for Numerical Methods in Engineering, 2005, 64(12): 1649-1677. doi: 10.1002/nme.1422
|
| [12] |
BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2007, 50(15-16): 2859-2873. doi: 10.1016/j.ijheatmasstransfer.2007.01.039
|
| [13] |
IGA A, NISHIWAKI S, IZUI K, et al. Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection[J]. International Journal of Heat and Mass Transfer, 2009, 52(11-12): 2721-2732. doi: 10.1016/j.ijheatmasstransfer.2008.12.013
|
| [14] |
DEDE E M, JOSHI S N, ZHOU F. Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink[J]. Journal of Mechanical Design, 2015, 137(11): 111403. doi: 10.1115/1.4030989
|
| [15] |
JOO Y, LEE I, KIM S J. Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient[J]. International Journal of Heat and Mass Transfer, 2017, 109: 123-133. doi: 10.1016/j.ijheatmasstransfer.2017.01.099
|
| [16] |
JOO Y, LEE I, KIM S J. Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 32-40. doi: 10.1016/j.ijheatmasstransfer.2018.08.009
|
| [17] |
LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. doi: 10.1002/nme.3072
|
| [18] |
TARI I, MEHRTASH M. Natural convection heat transfer from inclined plate-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2): 574-593. doi: 10.1016/j.ijheatmasstransfer.2012.08.050
|
| [19] |
ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16. doi: 10.1007/s00158-010-0594-7
|
| [20] |
TAKAMATSU K, MATSUMOTO T, LIU W, et al. Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection[J]. Annals of Nuclear Energy, 2018, 122: 201-206. doi: 10.1016/j.anucene.2018.08.047
|
| [21] |
BENGUIGUI L, CZAMANSKI D, MARINOV M, et al. When and where is a city fractal[J]. Environment and Planning B: Planning and Design, 2000, 27(4): 507-519. doi: 10.1068/b2617
|
| [22] |
TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
|