Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Mou Zhuoya, Zhu Longxiang, Wang Di, Ouyang Yong, Zhang Hong, Wan Lingfeng, Zhang Luteng, Tang Simiao, Pan Liangming. Study on the Drift Flux Model of Two-Phase Flow in the Liquid Metal Pool[J]. Nuclear Power Engineering, 2025, 46(5): 92-100. doi: 10.13832/j.jnpe.2024.09.0024
Citation: Mou Zhuoya, Zhu Longxiang, Wang Di, Ouyang Yong, Zhang Hong, Wan Lingfeng, Zhang Luteng, Tang Simiao, Pan Liangming. Study on the Drift Flux Model of Two-Phase Flow in the Liquid Metal Pool[J]. Nuclear Power Engineering, 2025, 46(5): 92-100. doi: 10.13832/j.jnpe.2024.09.0024

Study on the Drift Flux Model of Two-Phase Flow in the Liquid Metal Pool

doi: 10.13832/j.jnpe.2024.09.0024
  • Received Date: 2024-09-29
  • Accepted Date: 2024-11-13
  • Rev Recd Date: 2024-11-13
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • When the Steam Generator Tube Rupture (SGTR) occurs in lead-cooled fast reactors, the gas-liquid metal two-phase flow in the lead pool of primary circuit poses a severe threat to the safe operation of reactors. Understanding the flow characteristics of bubbles in the liquid metal pool and developing a drift flux model applicable to liquid metal two-phase flow are of great significance for improving the accuracy of reactor core safety predictions. An experimental study on the local distribution characteristics of phase parameters in a Woods alloy liquid pool was conducted using the double-sensor conductivity probe measurement technique. The experimental results show that the radial distribution of phase parameters such as void fraction tends to develop towards a core-peaked profile as the superficial gas velocity increases. Based on two-phase flow experimental data, a comparative analysis was conducted to evaluate the applicability of existing gas-water two-phase flow drift flux models in predicting the void fraction of liquid metal two-phase flow. It was found that only a few models showed good agreement with the experimental void fraction data. Combined with the experimental data and comparison results, the key parameters in the distribution parameter and drift velocity were modified based on the existing model. The relative calculation error of the newly developed model is within ±15%, and the absolute relative error is 5.35%.

     

  • loading
  • [1]
    CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of generation IV international forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042
    [2]
    GLAZOV A G, LEONOV V N, ORLOV V V, et al. Brest reactor and plant-site nuclear fuel cycle[J]. Atomic Energy, 2007, 103(1): 501-508. doi: 10.1007/s10512-007-0080-5
    [3]
    ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. SVBR-100 module-type fast reactor of the IV generation for regional power industry[J]. Journal of Nuclear Materials, 2011, 415(3): 237-244. doi: 10.1016/j.jnucmat.2011.04.038
    [4]
    DINH T N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis[C]//International Congress on Advances in Nuclear Power Plants. Nice, France, 2007: 7497.
    [5]
    GU Z X, WANG G, BAI Y Q, et al. Preliminary investigation on the primary heat exchanger lower head rupture accident of forced circulation LBE-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 81: 84-90. doi: 10.1016/j.anucene.2015.03.018
    [6]
    MASCHEK W, CHEN X N, LIU P, et al. Safety and design concepts of the 400MWth-class EFIT accelerator driven transmuter and considerations for further developments[J]. Energy Conversion and Management, 2010, 51(9): 1764-1773. doi: 10.1016/j.enconman.2009.12.042
    [7]
    WANG S, FLAD M, MASCHEK W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy, 2008, 50(2-6): 363-369. doi: 10.1016/j.pnucene.2007.11.018
    [8]
    ROELOFS F, GERSCHENFELD A, TARANTINO M, et al. Thermal-hydraulic challenges in liquid-metal-cooled reactors[M]//ROELOFS F. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors. Amsterdam: Elsevier, 2019: 17-43.
    [9]
    WANG G. A review of research progress in heat exchanger tube rupture accident of heavy liquid metal cooled reactors[J]. Annals of Nuclear Energy, 2017, 109: 1-8. doi: 10.1016/j.anucene.2017.05.034
    [10]
    ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. Argonne: Argonne National Laboratory, 1977.
    [11]
    KOCAMUSTAFAOGULLARI G, ISHII M. Maximum fluid particle size for bubbles and drops[C]//ASME Winter Annual Meeting. Miami Beach, Florida, USA: ASME, 1985: 99-107.
    [12]
    KATAOKA I, ISHII M. Drift flux model for large diameter pipe and new correlation for pool void fraction[J]. International Journal of Heat and Mass Transfer, 1987, 30(9): 1927-1939. doi: 10.1016/0017-9310(87)90251-1
    [13]
    HIBIKI T, ISHII M. Distribution parameter and drift velocity of drift-flux model in bubbly flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 707-721. doi: 10.1016/S0017-9310(01)00195-8
    [14]
    HIBIKI T, ISHII M. One-dimensional drift-flux model for two-phase flow in a large diameter pipe[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1773-1790. doi: 10.1016/S0017-9310(02)00473-8
    [15]
    SMISSAERT G E. Two-component two-phase flow parameters for low circulation rates: ANL-6755[R]. Argonne: Argonne National Laboratory, 1963.
    [16]
    SAITO M. Dispersion characteristics of gas-liquid two-phase pools[C]//6th International Conference on Nuclear Engineering. San Diego, USA: ASME, 1998.
    [17]
    MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization and measurement of gas–liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424(1): 229-234.
    [18]
    HIBIKI T, SAITO Y, MISHIMA K, et al. Study on flow characteristics in gas-molten metal mixture pool[J]. Nuclear Engineering and Design, 2000, 196(2): 233-245. doi: 10.1016/S0029-5493(99)00293-9
    [19]
    SAITO Y, MISHIMA K, TOBITA Y, et al. Measurements of liquid–metal two-phase flow by using neutron radiography and electrical conductivity probe[J]. Experimental Thermal and Fluid Science, 2005, 29(3): 323-330. doi: 10.1016/j.expthermflusci.2004.05.009
    [20]
    YAMADA Y, AKASHI T, TAKAHASHI M. Experiment and numerical simulation of bubble behaviors in argon gas injection into lead-bismuth pool[C]//14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 447-454.
    [21]
    KEPLINGER O, SHEVCHENKO N, ECKERT S. Visualization of bubble coalescence in bubble chains rising in a liquid metal[J]. International Journal of Multiphase Flow, 2018, 105: 159-169. doi: 10.1016/j.ijmultiphaseflow.2018.04.001
    [22]
    KEPLINGER O, SHEVCHENKO N, ECKERT S. Experimental investigation of bubble breakup in bubble chains rising in a liquid metal[J]. International Journal of Multiphase Flow, 2019, 116: 39-50. doi: 10.1016/j.ijmultiphaseflow.2019.03.027
    [23]
    ARIYOSHI G, INATOMI R, ITO D, et al. Effect of wall wettability condition on drift-flux parameters in lead–bismuth two-phase flow in circular and annular bubble columns[J]. Journal of Nuclear Science and Technology, 2018, 55(3): 239-253. doi: 10.1080/00223131.2017.1394230
    [24]
    NEAL L G, BANKOFF S G. A high resolution resistivity probe for determination of local void properties in gas‐liquid flow[J]. AIChE Journal, 1963, 9(4): 490-494. doi: 10.1002/aic.690090415
    [25]
    KIM S. Interfacial area transport equation and measurement of local interfacial characteristics[D]. West Lafayette: Purdue University, 1999.
    [26]
    FU X Y. Interfacial area measurement and transport modeling in air-water two-phase flow[D]. West Lafayette: Purdue University, 2001.
    [27]
    ZHU L X, LIU L, ZHANG L T, et al. Uncertainty study of two-phase flow distribution characteristics measurement based on bubble trajectory tracking method[J]. Chemical Engineering Science, 2025, 302: 120795. doi: 10.1016/j.ces.2024.120795
    [28]
    SUZUKI T, TOBITA Y, KONDO S, et al. Analysis of gas–liquid metal two-phase flows using a reactor safety analysis code SIMMER-III[J]. Nuclear Engineering and Design, 2003, 220(3): 207-223. doi: 10.1016/S0029-5493(02)00349-7
    [29]
    SHEN X Z, HIBIKI T. Distribution parameter and drift velocity for upward gas-liquid metal two-phase flow[J]. Applied Thermal Engineering, 2021, 184: 116242. doi: 10.1016/j.applthermaleng.2020.116242
    [30]
    ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. doi: 10.1115/1.3689137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (21) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return