| Citation: | Mou Zhuoya, Zhu Longxiang, Wang Di, Ouyang Yong, Zhang Hong, Wan Lingfeng, Zhang Luteng, Tang Simiao, Pan Liangming. Study on the Drift Flux Model of Two-Phase Flow in the Liquid Metal Pool[J]. Nuclear Power Engineering, 2025, 46(5): 92-100. doi: 10.13832/j.jnpe.2024.09.0024 |
| [1] |
CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of generation IV international forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042
|
| [2] |
GLAZOV A G, LEONOV V N, ORLOV V V, et al. Brest reactor and plant-site nuclear fuel cycle[J]. Atomic Energy, 2007, 103(1): 501-508. doi: 10.1007/s10512-007-0080-5
|
| [3] |
ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. SVBR-100 module-type fast reactor of the IV generation for regional power industry[J]. Journal of Nuclear Materials, 2011, 415(3): 237-244. doi: 10.1016/j.jnucmat.2011.04.038
|
| [4] |
DINH T N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis[C]//International Congress on Advances in Nuclear Power Plants. Nice, France, 2007: 7497.
|
| [5] |
GU Z X, WANG G, BAI Y Q, et al. Preliminary investigation on the primary heat exchanger lower head rupture accident of forced circulation LBE-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 81: 84-90. doi: 10.1016/j.anucene.2015.03.018
|
| [6] |
MASCHEK W, CHEN X N, LIU P, et al. Safety and design concepts of the 400MWth-class EFIT accelerator driven transmuter and considerations for further developments[J]. Energy Conversion and Management, 2010, 51(9): 1764-1773. doi: 10.1016/j.enconman.2009.12.042
|
| [7] |
WANG S, FLAD M, MASCHEK W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy, 2008, 50(2-6): 363-369. doi: 10.1016/j.pnucene.2007.11.018
|
| [8] |
ROELOFS F, GERSCHENFELD A, TARANTINO M, et al. Thermal-hydraulic challenges in liquid-metal-cooled reactors[M]//ROELOFS F. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors. Amsterdam: Elsevier, 2019: 17-43.
|
| [9] |
WANG G. A review of research progress in heat exchanger tube rupture accident of heavy liquid metal cooled reactors[J]. Annals of Nuclear Energy, 2017, 109: 1-8. doi: 10.1016/j.anucene.2017.05.034
|
| [10] |
ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. Argonne: Argonne National Laboratory, 1977.
|
| [11] |
KOCAMUSTAFAOGULLARI G, ISHII M. Maximum fluid particle size for bubbles and drops[C]//ASME Winter Annual Meeting. Miami Beach, Florida, USA: ASME, 1985: 99-107.
|
| [12] |
KATAOKA I, ISHII M. Drift flux model for large diameter pipe and new correlation for pool void fraction[J]. International Journal of Heat and Mass Transfer, 1987, 30(9): 1927-1939. doi: 10.1016/0017-9310(87)90251-1
|
| [13] |
HIBIKI T, ISHII M. Distribution parameter and drift velocity of drift-flux model in bubbly flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 707-721. doi: 10.1016/S0017-9310(01)00195-8
|
| [14] |
HIBIKI T, ISHII M. One-dimensional drift-flux model for two-phase flow in a large diameter pipe[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1773-1790. doi: 10.1016/S0017-9310(02)00473-8
|
| [15] |
SMISSAERT G E. Two-component two-phase flow parameters for low circulation rates: ANL-6755[R]. Argonne: Argonne National Laboratory, 1963.
|
| [16] |
SAITO M. Dispersion characteristics of gas-liquid two-phase pools[C]//6th International Conference on Nuclear Engineering. San Diego, USA: ASME, 1998.
|
| [17] |
MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization and measurement of gas–liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424(1): 229-234.
|
| [18] |
HIBIKI T, SAITO Y, MISHIMA K, et al. Study on flow characteristics in gas-molten metal mixture pool[J]. Nuclear Engineering and Design, 2000, 196(2): 233-245. doi: 10.1016/S0029-5493(99)00293-9
|
| [19] |
SAITO Y, MISHIMA K, TOBITA Y, et al. Measurements of liquid–metal two-phase flow by using neutron radiography and electrical conductivity probe[J]. Experimental Thermal and Fluid Science, 2005, 29(3): 323-330. doi: 10.1016/j.expthermflusci.2004.05.009
|
| [20] |
YAMADA Y, AKASHI T, TAKAHASHI M. Experiment and numerical simulation of bubble behaviors in argon gas injection into lead-bismuth pool[C]//14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 447-454.
|
| [21] |
KEPLINGER O, SHEVCHENKO N, ECKERT S. Visualization of bubble coalescence in bubble chains rising in a liquid metal[J]. International Journal of Multiphase Flow, 2018, 105: 159-169. doi: 10.1016/j.ijmultiphaseflow.2018.04.001
|
| [22] |
KEPLINGER O, SHEVCHENKO N, ECKERT S. Experimental investigation of bubble breakup in bubble chains rising in a liquid metal[J]. International Journal of Multiphase Flow, 2019, 116: 39-50. doi: 10.1016/j.ijmultiphaseflow.2019.03.027
|
| [23] |
ARIYOSHI G, INATOMI R, ITO D, et al. Effect of wall wettability condition on drift-flux parameters in lead–bismuth two-phase flow in circular and annular bubble columns[J]. Journal of Nuclear Science and Technology, 2018, 55(3): 239-253. doi: 10.1080/00223131.2017.1394230
|
| [24] |
NEAL L G, BANKOFF S G. A high resolution resistivity probe for determination of local void properties in gas‐liquid flow[J]. AIChE Journal, 1963, 9(4): 490-494. doi: 10.1002/aic.690090415
|
| [25] |
KIM S. Interfacial area transport equation and measurement of local interfacial characteristics[D]. West Lafayette: Purdue University, 1999.
|
| [26] |
FU X Y. Interfacial area measurement and transport modeling in air-water two-phase flow[D]. West Lafayette: Purdue University, 2001.
|
| [27] |
ZHU L X, LIU L, ZHANG L T, et al. Uncertainty study of two-phase flow distribution characteristics measurement based on bubble trajectory tracking method[J]. Chemical Engineering Science, 2025, 302: 120795. doi: 10.1016/j.ces.2024.120795
|
| [28] |
SUZUKI T, TOBITA Y, KONDO S, et al. Analysis of gas–liquid metal two-phase flows using a reactor safety analysis code SIMMER-III[J]. Nuclear Engineering and Design, 2003, 220(3): 207-223. doi: 10.1016/S0029-5493(02)00349-7
|
| [29] |
SHEN X Z, HIBIKI T. Distribution parameter and drift velocity for upward gas-liquid metal two-phase flow[J]. Applied Thermal Engineering, 2021, 184: 116242. doi: 10.1016/j.applthermaleng.2020.116242
|
| [30] |
ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. doi: 10.1115/1.3689137
|