Citation: | Shen Teng, Wang Chengyu, Guo Shaoqiang, He Kai. Study on Oxidation Corrosion of Nuclear Graphite by Water Vapor[J]. Nuclear Power Engineering, 2025, 46(4): 152-158. doi: 10.13832/j.jnpe.2024.090008 |
[1] |
徐世江,康飞宇. 《核工程中的炭和石墨材料》[M]. 北京:清华大学出版社,2010:252-294.
|
[2] |
ALONSO G, RAMIREZ R, DEL VALLE E, et al. Process heat cogeneration using a high temperature reactor[J]. Nuclear Engineering and Design, 2014, 280: 137-143. doi: 10.1016/j.nucengdes.2014.10.005
|
[3] |
FANG C, MORRIS R, LI F. Safety features of high temperature gas cooled reactor[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1-3.
|
[4] |
AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010
|
[5] |
CONTESCU C I, MEE R W. Status of chronic oxidation studies of graphite:ORNL/TM-2016/195[R]. Tennessee: Oak Ridge National Laboratory, 2016.
|
[6] |
WANG Y, ZHENG Y H, LI F, et al. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2014, 271: 404-410. doi: 10.1016/j.nucengdes.2013.12.009
|
[7] |
WANG C Q, SHI S B, ARCILESI D, et al. Scaling analysis and test facility design for steam ingress accident in MHTGR[C]//Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety. Gyeongju: Korean Nuclear Society, 2016.
|
[8] |
CHO Y J, GARCIA D, YU H Z, et al. Oxidation behaviors of matrix-grade graphite during water vapor ingress accidents for high temperature gas-cooled reactors[J]. Carbon, 2021, 185: 161-176. doi: 10.1016/j.carbon.2021.09.032
|
[9] |
CHO Y J, LU K. Water vapor oxidation of SiC layer in surrogate TRISO fuel particles[J]. Composites Part B: Engineering, 2021, 215: 108807. doi: 10.1016/j.compositesb.2021.108807
|
[10] |
CHO Y J, LU K. Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors[J]. Carbon, 2020, 164: 251-260. doi: 10.1016/j.carbon.2020.04.004
|
[11] |
WICHNER R P, BURCHELL T D, CONTESCU C I. Penetration depth and transient oxidation of graphite by oxygen and water vapor[J]. Journal of Nuclear Materials, 2009, 393(3): 518-521. doi: 10.1016/j.jnucmat.2009.06.032
|
[12] |
CONTESCU C I, MEE R W, LEE Y J J et al. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors[J]. Carbon, 2018, 127: 158-169. doi: 10.1016/j.carbon.2017.11.001
|
[13] |
VELASQUEZ C, HIGHTOWER G, BURNETTE R. The oxidation of H-451 graphite by steam. Part I: reaction kinetics:GA-A14951[R]. Oakland: General Atomic Co. , 1978: 1-62.
|
[14] |
WANG C Q, SUN X D, CHRISTENSEN R N. Multiphysics simulation of moisture-graphite oxidation in MHTGR[J]. Annals of Nuclear Energy, 2019, 131: 483-495. doi: 10.1016/j.anucene.2019.03.040
|
[15] |
HINSSEN H K, KÜHN K, MOORMANN R, et al. Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR[J]. Nuclear Engineering and Design, 2008, 238(11): 3018-3025. doi: 10.1016/j.nucengdes.2008.02.013
|