Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Xu Fenqin, Yan Xiaoyu, Pang Bo, Zhao Dou, Tu Yan. Research on Intelligent Online Monitoring and Robust Self-Correction for Nuclear Reactor Sensors[J]. Nuclear Power Engineering, 2025, 46(5): 234-242. doi: 10.13832/j.jnpe.2024.090019
Citation: Xu Fenqin, Yan Xiaoyu, Pang Bo, Zhao Dou, Tu Yan. Research on Intelligent Online Monitoring and Robust Self-Correction for Nuclear Reactor Sensors[J]. Nuclear Power Engineering, 2025, 46(5): 234-242. doi: 10.13832/j.jnpe.2024.090019

Research on Intelligent Online Monitoring and Robust Self-Correction for Nuclear Reactor Sensors

doi: 10.13832/j.jnpe.2024.090019
  • Received Date: 2024-08-15
  • Rev Recd Date: 2024-11-15
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • A novel training dataset processing method with high robustness was proposed to address the poor robustness in data-driven analytic redundant sensor models, and an sensor online monitoring and self-correction method was developed based on a auto-associative multivariate Long Short-Term Memory (LSTM) artificial neural network model. The method was validated using actual sensor measurement data retrieved from a pressurized water reactor engineering test facility. The results indicate that this research method can achieve high-precision and robust reconstruction of sensor signals, hence meets the requirements of online monitoring and robust self-correction of nuclear reactor sensors.

     

  • loading
  • [1]
    李伟. 核电厂传感器状态监测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [2]
    MA J P, JIANG J. Applications of fault detection and diagnosis methods in nuclear power plants: a review[J]. Progress in Nuclear Energy, 2011, 53(3): 255-266. doi: 10.1016/j.pnucene.2010.12.001
    [3]
    HINES J W, SEIBERT R. Technical review of on-line monitoring techniques for performance assessment. Volume 1. State-of-the-art: NUREG/CR-6895[R]. Washington: U. S. Nuclear Regulatory Commission, 2006.
    [4]
    邓志光, 吴茜, 朱加良, 等. 基于改进LSTM的核电厂传感器故障诊断研究[J]. 自动化仪表, 2023, 44(6): 115-120.
    [5]
    YU Y, PENG M J, WANG H, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 148: 107662. doi: 10.1016/j.anucene.2020.107662
    [6]
    AYO-IMORU R M, CILLIERS A C. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry[J]. Annals of Nuclear Energy, 2018, 112: 177-188. doi: 10.1016/j.anucene.2017.10.010
    [7]
    刘向明. 基于模型的故障诊断方法的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2004.
    [8]
    HINES J W, GARVEY D, SEIBERT R, et al. Technical review of on-line monitoring techniques for performance assessment. Volume 2. Theoretical issues: NUREG/CR-6895[R]. Washington: U. S. Nuclear Regulatory Commission, 2008.
    [9]
    吴雪琼. 核电厂仪表在线监测技术的研究[D]. 上海: 上海交通大学, 2016.
    [10]
    KRAMER M A. Autoassociative neural networks[J]. Computers & Chemical Engineering, 1992, 16(4): 313-328.
    [11]
    UPADHYAYA B R, ERYUREK E. Application of neural networks for sensor validation and plant monitoring[J]. Nuclear Technology, 1992, 97(2): 170-176. doi: 10.13182/NT92-A34613
    [12]
    耿柯繁, 许分钦, 庞波, 等. 基于LSTM的核反应堆一回路传感器故障智能检测[J]. 自动化仪表, 2023, 44(S1): 366-370, 375.
    [13]
    CHAE Y H, KIM S G, KIM H, et al. A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models[J]. Annals of Nuclear Energy, 2020, 143: 107501. doi: 10.1016/j.anucene.2020.107501
    [14]
    WU W T, HE L G, LIN W W, et al. Developing an unsupervised real-time anomaly detection scheme for time series with multi-seasonality[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4147-4160. doi: 10.1109/TKDE.2020.3035685
    [15]
    LIANG H R, SONG L, WANG J X, et al. Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series[J]. Neurocomputing, 2021, 423: 444-462. doi: 10.1016/j.neucom.2020.10.084
    [16]
    陈智, 王鹏飞, 廖龙涛, 等. 小型压水反应堆智能控制[M]. 上海: 上海交通大学出版社, 2022: 54.
    [17]
    SHAHERYAR A, YIN X C, HAO H W, et al. Selection of optimal denoising-based regularization hyper-parameters for performance improvement in a sensor validation model[J]. Artificial Intelligence Review, 2018, 50(3): 341-382. doi: 10.1007/s10462-017-9546-6
    [18]
    SHI Y, ZHANG L Z. Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants[J]. Process Safety and Environmental Protection, 2022, 163: 438-452. doi: 10.1016/j.psep.2022.05.039
    [19]
    WANG M D, LIN T H, JHAN K C, et al. Abnormal event detection, identification and isolation in nuclear power plants using LSTM networks[J]. Progress in Nuclear Energy, 2021, 140: 103928. doi: 10.1016/j.pnucene.2021.103928
    [20]
    FENG C, LI T T, CHANA D. Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks[C]//Proceedings of 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Denver: IEEE, 2017: 261-272.
    [21]
    朱浩. 小型模块化反应堆智能容错控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
    [22]
    王振营, 谢志国, 张秀春. 岭澳二期核电站传感器故障行为分析[J]. 自动化与仪器仪表, 2011(3): 105-108. doi: 10.3969/j.issn.1001-9227.2011.03.042
    [23]
    WANG Y Q, ZHOU D H. Sensor gain fault diagnosis for a class of nonlinear systems[J]. European Journal of Control, 2006, 12(5): 523-535. doi: 10.3166/ejc.12.523-535
    [24]
    HINES J W, RASMUSSEN B. Online sensor calibration monitoring uncertainty estimation[J]. Nuclear Technology, 2005, 151(3): 281-288. doi: 10.13182/NT05-A3650
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (48) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return