| Citation: | Xu Fenqin, Yan Xiaoyu, Pang Bo, Zhao Dou, Tu Yan. Research on Intelligent Online Monitoring and Robust Self-Correction for Nuclear Reactor Sensors[J]. Nuclear Power Engineering, 2025, 46(5): 234-242. doi: 10.13832/j.jnpe.2024.090019 |
| [1] |
李伟. 核电厂传感器状态监测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
| [2] |
MA J P, JIANG J. Applications of fault detection and diagnosis methods in nuclear power plants: a review[J]. Progress in Nuclear Energy, 2011, 53(3): 255-266. doi: 10.1016/j.pnucene.2010.12.001
|
| [3] |
HINES J W, SEIBERT R. Technical review of on-line monitoring techniques for performance assessment. Volume 1. State-of-the-art: NUREG/CR-6895[R]. Washington: U. S. Nuclear Regulatory Commission, 2006.
|
| [4] |
邓志光, 吴茜, 朱加良, 等. 基于改进LSTM的核电厂传感器故障诊断研究[J]. 自动化仪表, 2023, 44(6): 115-120.
|
| [5] |
YU Y, PENG M J, WANG H, et al. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant[J]. Annals of Nuclear Energy, 2020, 148: 107662. doi: 10.1016/j.anucene.2020.107662
|
| [6] |
AYO-IMORU R M, CILLIERS A C. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry[J]. Annals of Nuclear Energy, 2018, 112: 177-188. doi: 10.1016/j.anucene.2017.10.010
|
| [7] |
刘向明. 基于模型的故障诊断方法的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2004.
|
| [8] |
HINES J W, GARVEY D, SEIBERT R, et al. Technical review of on-line monitoring techniques for performance assessment. Volume 2. Theoretical issues: NUREG/CR-6895[R]. Washington: U. S. Nuclear Regulatory Commission, 2008.
|
| [9] |
吴雪琼. 核电厂仪表在线监测技术的研究[D]. 上海: 上海交通大学, 2016.
|
| [10] |
KRAMER M A. Autoassociative neural networks[J]. Computers & Chemical Engineering, 1992, 16(4): 313-328.
|
| [11] |
UPADHYAYA B R, ERYUREK E. Application of neural networks for sensor validation and plant monitoring[J]. Nuclear Technology, 1992, 97(2): 170-176. doi: 10.13182/NT92-A34613
|
| [12] |
耿柯繁, 许分钦, 庞波, 等. 基于LSTM的核反应堆一回路传感器故障智能检测[J]. 自动化仪表, 2023, 44(S1): 366-370, 375.
|
| [13] |
CHAE Y H, KIM S G, KIM H, et al. A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models[J]. Annals of Nuclear Energy, 2020, 143: 107501. doi: 10.1016/j.anucene.2020.107501
|
| [14] |
WU W T, HE L G, LIN W W, et al. Developing an unsupervised real-time anomaly detection scheme for time series with multi-seasonality[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4147-4160. doi: 10.1109/TKDE.2020.3035685
|
| [15] |
LIANG H R, SONG L, WANG J X, et al. Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series[J]. Neurocomputing, 2021, 423: 444-462. doi: 10.1016/j.neucom.2020.10.084
|
| [16] |
陈智, 王鹏飞, 廖龙涛, 等. 小型压水反应堆智能控制[M]. 上海: 上海交通大学出版社, 2022: 54.
|
| [17] |
SHAHERYAR A, YIN X C, HAO H W, et al. Selection of optimal denoising-based regularization hyper-parameters for performance improvement in a sensor validation model[J]. Artificial Intelligence Review, 2018, 50(3): 341-382. doi: 10.1007/s10462-017-9546-6
|
| [18] |
SHI Y, ZHANG L Z. Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants[J]. Process Safety and Environmental Protection, 2022, 163: 438-452. doi: 10.1016/j.psep.2022.05.039
|
| [19] |
WANG M D, LIN T H, JHAN K C, et al. Abnormal event detection, identification and isolation in nuclear power plants using LSTM networks[J]. Progress in Nuclear Energy, 2021, 140: 103928. doi: 10.1016/j.pnucene.2021.103928
|
| [20] |
FENG C, LI T T, CHANA D. Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks[C]//Proceedings of 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Denver: IEEE, 2017: 261-272.
|
| [21] |
朱浩. 小型模块化反应堆智能容错控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
|
| [22] |
王振营, 谢志国, 张秀春. 岭澳二期核电站传感器故障行为分析[J]. 自动化与仪器仪表, 2011(3): 105-108. doi: 10.3969/j.issn.1001-9227.2011.03.042
|
| [23] |
WANG Y Q, ZHOU D H. Sensor gain fault diagnosis for a class of nonlinear systems[J]. European Journal of Control, 2006, 12(5): 523-535. doi: 10.3166/ejc.12.523-535
|
| [24] |
HINES J W, RASMUSSEN B. Online sensor calibration monitoring uncertainty estimation[J]. Nuclear Technology, 2005, 151(3): 281-288. doi: 10.13182/NT05-A3650
|