| Citation: | Shen Yu, Zhou Xiafeng, Zhang Fan, Chen Chong, Ren Huan. Multi-objective Optimization and Objective Decision Analysis of Supercritical Carbon Dioxide Nuclear Reactor System Based on CRITIC-TOPSIS Method[J]. Nuclear Power Engineering, 2025, 46(5): 285-293. doi: 10.13832/j.jnpe.2024.090022 |
| [1] |
黄彦平, 刘旻昀, 卓文彬, 等. 超临界二氧化碳核能动力系统的兴起和发展[J]. 原子能科学技术, 2023, 57(9): 1665-1680. doi: 10.7538/yzk.2023.youxian.0345
|
| [2] |
段承杰, 王捷, 杨小勇. 反应堆超临界CO2 Brayton循环特性[J]. 原子能科学技术, 2010, 44(11): 1341-1348. doi: 10.7538/yzk.2010.44.11.1341
|
| [3] |
DAVID C W. Optimizing economy of scale for the STAR energy supply architecture[C]//Proceedings of IAEA 2nd CRP Meeting on Small Reactors without Onsite Refueling. Miami, 2007.
|
| [4] |
LI M J, XU J L, CAO F, et al. The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle[J]. Energy, 2019, 173: 174-195. doi: 10.1016/j.energy.2019.01.135
|
| [5] |
MOHAGHEGHI M. Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles[D]. Orlando: University of Central Florida, 2015.
|
| [6] |
ZHAO J R, LI Y J, BAI J F, et al. Multi-objective optimization of marine nuclear power secondary circuit system based on improved multi-objective particle swarm optimization algorithm[J]. Progress in Nuclear Energy, 2023, 161: 104740. doi: 10.1016/j.pnucene.2023.104740
|
| [7] |
JIN Q L, XIA S J, XIE T C, et al. Multi-objective optimization of recompression S-CO2 cycle for gas turbine waste heat recovery[J]. Applied Thermal Engineering, 2023, 229: 120601. doi: 10.1016/j.applthermaleng.2023.120601
|
| [8] |
RAO Z H, XUE T C, HUANG K X, et al. Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design[J]. Energy Conversion and Management, 2019, 201: 112094. doi: 10.1016/j.enconman.2019.112094
|
| [9] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
| [10] |
DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems: the critic method[J]. Computers & Operations Research, 1995, 22(7): 763-770.
|
| [11] |
YUE Z L. A method for group decision-making based on determining weights of decision makers using TOPSIS[J]. Applied Mathematical Modelling, 2011, 35(4): 1926-1936. doi: 10.1016/j.apm.2010.11.001
|
| [12] |
BELL I H, WRONSKI J, QUOILIN S, et al. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2498-2508.
|
| [13] |
DOSTAL V, DRISCOLL M J, HEJZLAR P. A supercritical carbon dioxide cycle for next generation nuclear reactors[R]. Cambridge: Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
|
| [14] |
GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Journal of Chemical Engineering, 1976, 16(2): 359-368.
|
| [15] |
SWENSON A. Surrogate reactor modeling for space electrical system mass optimization[D]. Madison: University of Wisconsin-Madison, 2019.
|
| [16] |
DYREBY J J. Modeling the supercritical carbon dioxide Brayton cycle with recompression[D]. Madison: University of Wisconsin-Madison, 2014.
|