Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Wang Binbin. Application and Experimental Study of RBF Neural Network Algorithm in Flow-Induced Vibration of Pipelines[J]. Nuclear Power Engineering, 2025, 46(3): 125-130. doi: 10.13832/j.jnpe.2024.090042
Citation: Wang Binbin. Application and Experimental Study of RBF Neural Network Algorithm in Flow-Induced Vibration of Pipelines[J]. Nuclear Power Engineering, 2025, 46(3): 125-130. doi: 10.13832/j.jnpe.2024.090042

Application and Experimental Study of RBF Neural Network Algorithm in Flow-Induced Vibration of Pipelines

doi: 10.13832/j.jnpe.2024.090042
  • Received Date: 2024-09-13
  • Rev Recd Date: 2024-11-15
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • To address the issue of time-consuming traditional fluid-structure interaction methods, which make it difficult for nuclear power plant pipeline designers to perform targeted vibration reduction calculations during the design phase, this study adopts a data-driven radial basis function (RBF) neural network algorithm for pipeline flow-induced vibration analysis. This method can quantitatively calculate the pipeline flow-induced vibration in a short period of time by training on a large amount of load data of throttling fittings in the database. Compared to traditional fluid-structure interaction methods, it greatly improves the computational efficiency of pipeline flow-induced vibration. To validate the calculation results, experimental studies were conducted on on ball valves at different opening degrees and elbow pipes. Due to the presence of external structural vibrations such as pump excitation, experiments have found that when the flow-induced vibration dominates the total vibration, the simulation results are relatively close to the experimental results. When external structural vibration dominates the total vibration, the simulation and experimental results are of the same magnitude and have consistent variation patterns. The results demonstrate that the data-driven based RBF neural network method is reliable and effective for analyzing flow-induced vibrations in pipelines.

     

  • loading
  • [1]
    王丛林,柴晓明,杨博,等. 先进核能技术发展及展望[J]. 核动力工程,2023, 44(5): 1-5.
    [2]
    郑宽,徐志成,鲁刚,等. 高比例新能源电力系统演化进程中核电与新能源协调发展策略[J]. 中国电力,2021, 54(7): 27-35.
    [3]
    王国法,刘合,王丹丹,等. 新形势下我国能源高质量发展与能源安全[J]. 中国科学院院刊,2023, 38(1): 23-37.
    [4]
    姜乃斌,冯志鹏,臧峰刚,等. 核工程中的流致振动理论与应用[M]. 上海: 上海交通大学出版社,2018: 91-93.
    [5]
    刘诗文,赫荣辉,杨钊,等. 输流管网流致振动特性数值模拟研究[J]. 核动力工程,2022, 43(1): 187-191.
    [6]
    王天富,唐科范,章期文,等. 核电站管路流致振动和噪声的数值模拟研究[J]. 水动力学研究与进展,2021, 36(1): 56-66.
    [7]
    HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092.
    [8]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [9]
    BROOMHEAD D S, LOWE D. Multivariable function interpolation and adaptive networks[J]. Complex Systems, 1988, 2: 321-355.
    [10]
    POGGIO T, GIROSI F. Networks for approximation and learning[J]. Proceedings of the IEEE, 1990, 78(9): 1481-1497. doi: 10.1109/5.58326
    [11]
    陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社,2013: 156-204.
    [12]
    杨庆华,占伟涛,吴海伟,等. 基于正交试验、BP神经网络和遗传算法的冷挤压模具优化设计方法[J]. 浙江工业大学学报,2015, 43(3): 251-256. doi: 10.3969/j.issn.1006-4303.2015.03.004
    [13]
    许开州,胡德金,魏臣隽. 基于正交试验和Vogl快速BP网络的球面磨削工艺优化方法[J]. 上海交通大学学报,2009, 43(12): 1956-1961.
    [14]
    黄鹍,陈森发,亓霞,等. 基于正交试验法的神经网络优化设计[J]. 系统工程理论方法应用,2004, 13(3): 272-275.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (10) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return