Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Chang Zhuang, Bai Bofeng, Han Xu, Wen Boyao, Luo Zhengyuan, Zhang Siliang. Study on the Influence of Filling Ratio on the Startup and Heat Transfer Performance of the Separate Heat Pipe with Plate Evaporator[J]. Nuclear Power Engineering, 2025, 46(5): 46-55. doi: 10.13832/j.jnpe.2024.090044
Citation: Chang Zhuang, Bai Bofeng, Han Xu, Wen Boyao, Luo Zhengyuan, Zhang Siliang. Study on the Influence of Filling Ratio on the Startup and Heat Transfer Performance of the Separate Heat Pipe with Plate Evaporator[J]. Nuclear Power Engineering, 2025, 46(5): 46-55. doi: 10.13832/j.jnpe.2024.090044

Study on the Influence of Filling Ratio on the Startup and Heat Transfer Performance of the Separate Heat Pipe with Plate Evaporator

doi: 10.13832/j.jnpe.2024.090044
  • Received Date: 2024-09-14
  • Rev Recd Date: 2024-11-28
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • Separated heat pipe can remove the decay heat generated by spent fuel effectively, demonstrating significant application value in the field of passive residual heat removal in nuclear plants. A new type of Separated heat pipe, featuring a capsule-type plate for the evaporator and a serpentine finned aluminum flat tube for the condenser, was proposed by our research group, and the influence law of different filling ratios on the start-up and heat transfer performance of Separated heat pipe was experimentally analyzed. The research found that, for the separated heat pipe with plate type evaporator in this research, the differential pressure across the evaporator reflects the start-up characteristics of Separated heat pipe more accurately compared to the superheat degree at the evaporator outlet. The time required for the evaporator pressure difference to stabilize first increases and then decreases with increasing filling ratio, indicating that the filling ratio significantly affects the startup behavior of such heat pipes. The maximum heat transfer capacity of Separated heat pipe can reach 183.6 kW in stable operation, and the corresponding filling ratio is 51%. The two-phase heat exchange area in evaporator and the temperature difference between working medium and environment in condenser both reaches maximum values at this point. Furthermore, the curve of heat transfer capacity versus filling ratio shows an optimal range of 51% to 82%, within which Separated heat pipe maintains high heat transfer performance. The thermal resistance of condenser dominates the total thermal resistance of Separated heat pipe. These research results provide references for optimization design and engineering application of Separated heat pipe.

     

  • loading
  • [1]
    吕军. 采用热管实现池式供热堆非能动余热导出的试验研究[J]. 核动力工程, 2024, 45(1): 79-83. doi: 10.13832/j.jnpe.2024.01.0079
    [2]
    韩旭, 常猛, 翁方检, 等. 压水堆核电厂乏燃料冷却系统设计比较研究[J]. 核安全, 2012, 35(1): 42-44. doi: 10.3969/j.issn.1672-5360.2012.01.010
    [3]
    鲜麟, 周科, 李峰, 等. 基于热管技术的非能动余热排出系统换热能力研究[J]. 核动力工程, 2019, 40(6): 100-104. doi: 10.13832/j.jnpe.2019.06.0100
    [4]
    HAN X, XU J, LI Y Y, et al. Progress in passive spent fuel pool cooling system R&D based on heat pipe technology[J]. Progress in Nuclear Energy, 2024, 175: 105335. doi: 10.1016/j.pnucene.2024.105335
    [5]
    LI J L, QI Z F, CAO K M, et al. Experimental investigation on the heat removal capacity of secondary side passive residual heat removal system for an integrated reactor[J]. Applied Thermal Engineering, 2022, 204: 117973. doi: 10.1016/j.applthermaleng.2021.117973
    [6]
    王明路, 熊珍琴, 顾汉洋, 等. 乏燃料水池非能动冷却热管传热性能研究[J]. 核动力工程, 2014, 35(5): 62-65. doi: 10.13832/j.jnpe.2014.05.0062
    [7]
    张柯远. 非能动安全壳冷却系统内含不凝性气体凝结换热研究[D]. 济南: 山东大学, 2023.
    [8]
    CHEN X B, GAO P Z, TAN S C, et al. An experimental investigation of flow boiling instability in a natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1125-1134. doi: 10.1016/j.ijheatmasstransfer.2017.10.076
    [9]
    LING L, ZHANG Q, YU Y B, et al. Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio[J]. Applied Thermal Engineering, 2016, 102: 375-382. doi: 10.1016/j.applthermaleng.2016.03.016
    [10]
    DING T, CAO H W, HE Z G, et al. Experiment research on influence factors of the separated heat pipe system, especially the filling ratio and Freon types[J]. Applied Thermal Engineering, 2017, 118: 357-364. doi: 10.1016/j.applthermaleng.2017.02.085
    [11]
    胡张保, 张志伟, 金听祥, 等. 采用微通道蒸发器的分离式热管充液率实验研究[J]. 制冷学报, 2015, 36(4): 98-102. doi: 10.3969/j.issn.0253-4339.2015.04.098
    [12]
    ZHANG H N, SHI Z C, LIU K T, et al. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers[J]. Applied Thermal Engineering, 2017, 111: 1083-1090. doi: 10.1016/j.applthermaleng.2016.10.029
    [13]
    ZOU S K, ZHANG Q, LING L, et al. Experimental investigation on the thermal performance of a water-cooled loop thermosyphon system under fan failure conditions[J]. International Journal of Refrigeration, 2021, 124: 85-95. doi: 10.1016/j.ijrefrig.2020.12.011
    [14]
    KUANG Y W, WANG W. Modeling and numerical investigation on the effects of filling ratio in a large separate heat pipe loop[J]. International Journal of Energy Research, 2022, 46(1): 415-432. doi: 10.1002/er.7287
    [15]
    LING L, ZHANG Q, YU Y B, et al. Experimental investigation on the thermal performance of water cooled multi-split heat pipe system (MSHPS) for space cooling in modular data centers[J]. Applied Thermal Engineering, 2016, 107: 591-601. doi: 10.1016/j.applthermaleng.2016.07.006
    [16]
    王浩. 大功率服务器CPU用热管换热器设计及性能研究[D]. 大连: 大连理工大学, 2019.
    [17]
    刘时安, 石东来, 刘勇兵, 等. 不同加热功率下充液率对无芯环路热管性能的影响[J]. 热科学与技术, 2020, 19(3): 226-232. doi: 10.13738/j.issn.1671-8097.018159
    [18]
    BAI Y, WANG L, ZHANG S, et al. Heat transfer characteristics of a natural circulation separate heat pipe under various operating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 191-200. doi: 10.1016/j.ijheatmasstransfer.2018.04.130
    [19]
    ZHANG P L, WANG B L, SHI W X, et al. Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer[J]. International Journal of Refrigeration, 2015, 58: 172-185. doi: 10.1016/j.ijrefrig.2015.06.014
    [20]
    ZHANG P L, WANG B L, SHI W X, et al. Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer[J]. Applied Energy, 2015, 160: 10-17. doi: 10.1016/j.apenergy.2015.09.033
    [21]
    KUANG Y W, YANG Q, WANG W. Thermal analysis of a heat pipe assisted passive cooling system for spent fuel pools[J]. International Journal of Refrigeration, 2022, 135: 174-188. doi: 10.1016/j.ijrefrig.2021.12.021
    [22]
    纪献兵, 徐进良, MARTHIAL A A, 等. 超轻多孔泡沫金属平板热管的传热性能研究[J]. 中国电机工程学报, 2013, 33(2): 72-78. doi: 10.13334/j.0258-8013.pcsee.2013.02.010
    [23]
    沙定国. 实用误差理论与数据处理[M]. 北京: 北京理工大学出版社, 1993: 1-272.
    [24]
    黄亮, 蔡茂林. 并联接入式气体泄漏量的测量方法[J]. 北京航空航天大学学报, 2012, 38(6): 799-803. doi: 10.13700/j.bh.1001-5965.2012.06.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (16) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return