Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Liu Huannan, Yuan Hongsheng, Ju Zhongyun, Xu Caihong, He Dongyu, Li Jinggang, Wang Ting. Study on the Applicability of Transition Boiling Heat Transfer Models Based on LOCUST Code[J]. Nuclear Power Engineering, 2025, 46(5): 37-45. doi: 10.13832/j.jnpe.2024.090046
Citation: Liu Huannan, Yuan Hongsheng, Ju Zhongyun, Xu Caihong, He Dongyu, Li Jinggang, Wang Ting. Study on the Applicability of Transition Boiling Heat Transfer Models Based on LOCUST Code[J]. Nuclear Power Engineering, 2025, 46(5): 37-45. doi: 10.13832/j.jnpe.2024.090046

Study on the Applicability of Transition Boiling Heat Transfer Models Based on LOCUST Code

doi: 10.13832/j.jnpe.2024.090046
  • Received Date: 2024-09-14
  • Accepted Date: 2025-07-10
  • Rev Recd Date: 2025-06-17
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • Transition boiling is a very important thermo-hydraulic phenomenon in the core analysis of pressurized water reactor (PWR), especially in the accident analysis. The accurate simulation of this phenomenon can improve the accuracy of core wall temperature prediction by software. Considering the small range of the transition boiling area and the large variation of the parameters, and the limitation of the test method, there is a lack of recognized and suitable transition boiling model. In order to evaluate the effect of different transition boiling models, six transition boiling models commonly used in the world are compared in this paper. Based on LOCUST, a thermo-hydraulic system analysis software independently developed by China General Nuclear Power Corporation, code development of the six transition boiling models and comparative study of software calculation results and test data were realized. The results show that the Chen relation and the Bjornard-Griffith relation are the best in simulating transition boiling phenomenon, showing good agreement with the experiment data. The results of this study lay the foundation for further exploring the differences and computational effects of various transition boiling heat transfer models, and provide reference for the selection of transition boiling heat transfer models in the development of thermo-hydraulic system analysis software.

     

  • loading
  • [1]
    琚忠云, 徐财红, 袁红胜, 等. LOCUST 1.2软件现象级验证[C]. 黑龙江哈尔滨: 国家能源核电软件重点实验室2020年学术年会. 2020.
    [2]
    袁红胜, 贺青云, 琚忠云, 等. LOCUST堆芯壁面传热模型分离效应确认[C]. 黑龙江哈尔滨: 国家能源核电软件重点实验室2020年学术年会. 2020.
    [3]
    袁红胜, 徐财红, 琚忠云, 等. 基于THTF稳态传热试验的LOCUST 1.2确认[J]. 核科学与工程, 2022, 42(6): 1377-1382.
    [4]
    赵宁宁, 袁红胜, 文青龙, 等. 堆芯功率分布对CCTF试验再淹没现象影响的评价研究[J]. 核动力工程, 2021, 42(6): 58-64.
    [5]
    DU Q, WEN Q L, YUAN H S, et al. Benchmark study of RBHT experiment for the effect of spacer grids on reflood heat transfer with locust code[C]. Los Angeles, USA: Proceedings of 2021 28th International Conference on Nuclear Engineering, 2021.
    [6]
    CHEN J C, SUNDARAM R K, OZKAYNAK F T. A phenomenological correlation for post-CHF heat transfer: NUREG-0237[R]. Washington: Nuclear Regulatory Commission, 1977.
    [7]
    ELLION M E. A study of the mechanism of boiling heat transfer[D]. Pasadena: California Institute of Technology, 1954.
    [8]
    徐济鋆. 沸腾传热和气液两相流[M]. 第二版. 北京: 原子能出版社, 2001: 314-315.
    [9]
    TONG L S. Boiling heat transfer and two-phase flow[M]. New York: Routledge, 1997: 275-277.
    [10]
    MATTSON R J, CONDIE K G, BENGSTON S J, et al. Regression analysis of post-CHF flow boiling data[C]//Proceedings of the Fifth International Heat Transfer Conference. Tokyo: Atomic Energy Commission, 1974.
    [11]
    HSU Y Y. A tentative correlation for the regime of transition boiling and film boiling during reflood[C]//Paper Presented at the 3rd Water Reactor Safety Review Information Meeting. Washington: United States Nuclear Regulatory Commission, 1986.
    [12]
    GROENEVELD D C, FUNG K K. Forced convective transition boiling: review of literature and comparison of predictive methods: AECL-5543[R]. Chalk River, Ontario: Atomic Energy of Canada Limited, 1976.
    [13]
    BJORNARD T A, GRIFFITH P. PWR blowdown heat transfer[C]//Proceedings of the Thermal and Hydraulic Aspects of Nuclear Reactor Safety. Atlanta: American Society of Mechanical Engineers, 1977: 17-41.
    [14]
    U. S. Nuclear Regulatory Commission. TRACE V5.0 theory manual: field equations, solution methods, and physical models: DC 20555-0001[R]. Washington: U. S. Nuclear Regulatory Commission, 2007.
    [15]
    KIRCHNER W L. Reflood heat transfer in a light water reactor[D]. Cambridge: Massachusetts Institute of Technology, 1976.
    [16]
    JOHANNSEN K, WEBER P, FENG Q. Experimental investigation of heat transfer in the transition region: EUR 13235 EN[R]. Brussels: Commission of the European communities, 1990.
    [17]
    Information Systems Laboratories. RELAP5/MOD3.3 code manual volume I: code structure, system models, and solution methods: Rev 1[R]. Washington, U. S: Nuclear Regulatory Commission, 2001.
    [18]
    Gesellschaft für Anlagenund Reaktorsicherheit(GRS) mbH. ATHLET mod 3.0 cycle a models and methods: GRS-P-1/Vol.3, Rev.3[R]. Germany: Gesellschaft für Anlagen-und Reaktorsicherheit, 2014.
    [19]
    BROMLEY L A. Heat transfer in stable film boiling[J]. Chemical Engineering Progress, 1950, 46: 221-227.
    [20]
    BERENSON P J. Film-boiling heat transfer from a horizontal surface[J]. Journal of Heat Transfer, 1961, 83(3): 351-356. doi: 10.1115/1.3682280
    [21]
    TONG L S. Heat-transfer mechanisms in nucleate and film boiling[J]. Nuclear Engineering and Design, 1972, 21(1): 1-25. doi: 10.1016/0029-5493(72)90082-9
    [22]
    BENNETT A W, HEWITT G F, KEARSEY H A, et al. Heat transfer to steam-water mixtures flowing in uniformly heated tubes in which the critical heat flux has been exceeded: AERE-R5373[R]. Harwell: Atomic Energy Research Establishment 1968.
    [23]
    SJOBERG A, CARAHER D. Assessment of RELAP5/MOD2 against 25 dryout experiments conducted at the royal institute of technology: NUREG/IA-0009[R]. Washington: U. S. Nuclear Regulatory Commission, 1986.
    [24]
    YODER G L, MORRIS D G, MULLINS C B, et al. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons: NUREG/CR-2435[R]. Oak Ridge: Oak Ridge National Laboratory, 1982.
    [25]
    ANKLAM T M, MILLER R J, WHITE M D. Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions: NUREG/CR-2456[R]. Oak Ridge: Oak Ridge National Laboratory, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (31) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return