Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Zhang Jiacheng, Jiang Guanfu, Wei Xinyu, Sun Peiwei. Research on Adaptive Control Method of Turbine in Nuclear Power Plant based on Fuzzy Neural Network[J]. Nuclear Power Engineering, 2025, 46(5): 267-273. doi: 10.13832/j.jnpe.2024.090061
Citation: Zhang Jiacheng, Jiang Guanfu, Wei Xinyu, Sun Peiwei. Research on Adaptive Control Method of Turbine in Nuclear Power Plant based on Fuzzy Neural Network[J]. Nuclear Power Engineering, 2025, 46(5): 267-273. doi: 10.13832/j.jnpe.2024.090061

Research on Adaptive Control Method of Turbine in Nuclear Power Plant based on Fuzzy Neural Network

doi: 10.13832/j.jnpe.2024.090061
  • Received Date: 2024-09-18
  • Rev Recd Date: 2024-11-10
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • Aiming at the Digital Electro-Hydraulic (DEH) Control System faults that affect the stable operation of nuclear power plant, this study conducts fault simulation analysis of electro-hydraulic servo valves, oil motors, and displacement sensors in the DEH system. An adaptive control scheme based on a fuzzy neural network (FNN) with fault information adjustment is proposed. The FNN is used to optimize the parameters of the nuclear power plant turbine controller, enabling adaptive adjustments according to changes in actuator characteristics. Simulation results after optimization show that the designed control system has a good control effect on the turbine system both in fault-free and fault-present conditions. Consequently, the FNN adaptive control method proposed in this study can be applied to mitigate DEH system faults and provides valuable reference for the design of automatic turbine control systems in nuclear power plants.

     

  • loading
  • [1]
    肖增弘, 徐丰. 汽轮机数字式电液调节系统[M]. 北京: 中国电力出版社, 2003: 110-112.
    [2]
    于达仁, 曹建明, 徐基豫. 汽轮机液压转速调节系统几种常见故障诊断分析[J]. 热能动力工程, 1992, 7(5): 259-263.
    [3]
    齐砚东. DEH应用中常见故障及处理方法[J]. 东北电力技术, 2002, 23(5): 19-21. doi: 10.3969/j.issn.1004-7913.2002.05.005
    [4]
    POLOEI F, ZEKRI M, SHOOREHDELI M A. Fuzzy-LQR hybrid control of an electro hydraulic velocity servo system[C]//Proceedings of 2011 11th International Conference on Hybrid Intelligent Systems. Melacca: IEEE, 2011: 5-9.
    [5]
    ALY A A, EL-LAIL A S A, SHOUSH K A, et al. Intelligent PI fuzzy control of an electro-hydraulic manipulator[J]. International Journal of Intelligent Systems and Applications, 2012, 4(7): 43-49. doi: 10.5815/ijisa.2012.07.06
    [6]
    SINTHIPSOMBOON K, HUNSACHAROONROJ I, KHEDARI J, et al. A hybrid of fuzzy and fuzzy self-tuning PID controller for servo electro-hydraulic system[C]//Proceedings of 2011 6th IEEE Conference on Industrial Electronics and Applications. Beijing: IEEE, 2011: 123-130.
    [7]
    YILDIRIM Ş, ERKAYA S, UZMAY İ, et al. A neural based position controller for an electrohydraulic servo system[C]//Proceedings of the 11th WSEAS International Conference on Robotics, Control and Manufacturing Technology, and 11th WSEAS International Conference on Multimedia Systems & Signal Processing. Venice: World Scientific and Engineering Academy and Society, 2011: 31-38.
    [8]
    韩桂华, 王鹏飞, 张此军. 电液伺服系统神经网络辨识及控制器设计[J]. 哈尔滨理工大学学报, 2017, 22(5): 18-23.
    [9]
    吴晓明, 马立廷, 郑协, 等. 改进的RBF神经网络PID算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66. doi: 10.3969/j.issn.1001-3881.2015.11.018
    [10]
    韩成浩, 赵丁选. 基于自整定模糊PID控制算法的电液伺服系统设计[J]. 制造业自动化, 2012, 34(4): 11-13, 26.
    [11]
    管成, 潘双夏. 电液伺服系统的非线性鲁棒自适应控制[J]. 中国电机工程学报, 2007, 27(24): 107-112. doi: 10.3321/j.issn:0258-8013.2007.24.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return