Advance Search
Volume 46 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Xu Jun, Yu Hongxing, Deng Jian, Liu Yu, Zhang Muhao, Xia Xiaohui. Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter[J]. Nuclear Power Engineering, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029
Citation: Xu Jun, Yu Hongxing, Deng Jian, Liu Yu, Zhang Muhao, Xia Xiaohui. Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter[J]. Nuclear Power Engineering, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029

Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter

doi: 10.13832/j.jnpe.2024.10.0029
  • Received Date: 2024-09-18
  • Rev Recd Date: 2024-11-26
  • Available Online: 2025-06-09
  • Publish Date: 2025-06-09
  • To support the research and development of heat pipe reactors, this study designed and constructed a high-temperature compressed air cooling experimental platform to investigate the startup characteristics of high length-diameter arterial sodium heat pipes. The analysis results demonstrate the following: ① In the initial stage of the heat pipe startup process, high-temperature compressed air elevates the temperature of the condensation section, which facilitates the formation of a continuous flow of sodium vapor within the heat pipe, thereby accelerating the cold-state startup speed of the heat pipe; ② During the startup process, preheating of the condensation section enhances the temperature of the sodium vapor, effectively preventing the occurrence of sonic limit phenomenon, and consequently, increases the probability of successful heat pipe startup. The results in this paper provide data and theoretical support for the optimization of the cold start-up mode of the arterial sodium heat pipe with large length-diameter ratio.

     

  • loading
  • [1]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [2]
    MUELLER C, TSVETKOV P. A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis[J]. Annals of Nuclear Energy, 2021, 160: 108393. doi: 10.1016/j.anucene.2021.108393
    [3]
    TIAN Z X, WANG C L, GUO K L, et al. A review of liquid metal high temperature heat pipes: theoretical model, design, and application[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434. doi: 10.1016/j.ijheatmasstransfer.2023.124434
    [4]
    庄骏,张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社,2000: 45-50.
    [5]
    WALKER K L, TARAU C, ANDERSON W G. Grooved and self-venting arterial heat pipes for space fission power systems[J]. Heat Pipe Science and Technology, An International Journal, 2014, 5(1-4): 507-514. doi: 10.1615/HeatPipeScieTech.v5.i1-4.580
    [6]
    ANDERSON W G, BEARD D, ANDERSON W G, TARAU C. Self-venting arterial heat pipes for spacecraft applications[C]//Proceedings of the Joint 18th IHPC and 12th IHPS. Jeju: IHPC, 2016: 25-27.
    [7]
    WALKER K L, TARAU C, ANDERSON W G. Alkali metal heat pipes for space fission power[C]//Proceedings of the Nuclear and Emerging Technologies for Space 2013. Albuquerque, NM: NETS, 2013: 1-10.
    [8]
    WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136: 107051. doi: 10.1016/j.anucene.2019.107051
    [9]
    MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625
    [10]
    刘逍,田智星,王成龙,等. 高温热管传热特性实验研究[J]. 核动力工程,2020, 41(S1): 106-111.
    [11]
    卫光仁,柴宝华,韩冶,等. 高温钠热管传热性能试验研究[J]. 原子能科学技术,2021, 55(6): 1039-1046. doi: 10.7538/yzk.2021.youxian.0115
    [12]
    ZHONG R C, FENG W P, MA Y G, et al. Experimental study of heat pipe start-up characteristics and development of an enhanced model considering gas diffusion effects[J]. Applied Thermal Engineering, 2024, 257: 124460. doi: 10.1016/j.applthermaleng.2024.124460
    [13]
    ZHANG M H, MIAO Q X, ZHANG S Y, et al. Experimental study of non-condensable gas effects on sonic limit of sodium heat pipe[J]. Applied Thermal Engineering, 2023, 232: 120970. doi: 10.1016/j.applthermaleng.2023.120970
    [14]
    LEVY E K. Theoretical investigation of heat pipes operating at low vapor pressures[J]. Journal of Engineering for Industry, 1968, 90(4): 547-552. doi: 10.1115/1.3604687
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return