Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Qiu Guihui, Duan Yuangang, Ran Xiaobing, Niu Wenhua, Su Xinrong. Thermal-Hydraulic Performance Analysis of Tube Bundles in Economizer-type Steam Generators[J]. Nuclear Power Engineering, 2025, 46(5): 115-123. doi: 10.13832/j.jnpe.2024.10.0043
Citation: Qiu Guihui, Duan Yuangang, Ran Xiaobing, Niu Wenhua, Su Xinrong. Thermal-Hydraulic Performance Analysis of Tube Bundles in Economizer-type Steam Generators[J]. Nuclear Power Engineering, 2025, 46(5): 115-123. doi: 10.13832/j.jnpe.2024.10.0043

Thermal-Hydraulic Performance Analysis of Tube Bundles in Economizer-type Steam Generators

doi: 10.13832/j.jnpe.2024.10.0043
  • Received Date: 2024-10-10
  • Rev Recd Date: 2025-06-20
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • This paper presents a coupled thermal-hydraulic analysis of flow and heat transfer characteristics in the tube bundle region of economizer-type steam generators, specifically examining the partition plate height optimization. Based on HPR1000 standard parameters, the research examines the influence of the economizer on heat transfer performance and saturation pressure in the tube bundle region. A three-dimensional two-phase flow numerical model was developed using the porous media approach and drift-flux theory to analyze flow and heat transfer. The study reveals the quantitative impact of partition plate height on saturation pressure (with a maximum increase of 0.22 MPa) and heat transfer area (reducing approximately 1000 m2). Numerical analysis demonstrates that when the partition plate height is 5.8 m, a cold-side circulation ratio of 1.15 is obtained, and the outlet of the subcooled boiling zone in the economizer shows a high void fraction distribution, indicating that the bulk fluid temperature has reached saturation. This condition achieves optimal compatibility with the hot-side saturated boiling region. The findings provide a design basis for improving the thermal efficiency of nuclear power units.

     

  • loading
  • [1]
    《蒸汽发生器》编写组. 蒸汽发生器[M]. 北京: 原子能出版社, 1982: 2.
    [2]
    RIZNIC J. Steam generators for nuclear power plants[M]. Duxford: Woodhead Publishing, 2017: 49.
    [3]
    EPRI. Steam generator reference book[M]. Palo Alto, California: EPRI, 1994: 59.
    [4]
    FRAMATOME. Preheating steam generator: US, 5335629[P]. 1994-08-09.
    [5]
    忻盛. 秦山三期CANDU堆核电站蒸汽发生器老化管理研究[D]. 上海: 上海交通大学, 2007.
    [6]
    吴杨, 王海松, 李鹏飞, 等. 带轴向预热器的高效蒸汽发生器设计技术[J]. 中国核电, 2017, 10(1): 75-81.
    [7]
    杨钊, 黄伟, 周捷. 带轴流式预热器蒸汽发生器的稳态热工水力特性研究[J]. 世界科技研究与发展, 2016, 38(4): 799-803, 847.
    [8]
    吴杨, 李冬慧, 李鹏飞, 等. 基于轴向预热器的蒸汽发生器强化传热研究[J]. 核科学与工程, 2018, 38(6): 928-934.
    [9]
    林宗虎. 气液两相流和沸腾传热[M]. 西安: 西安交通大学出版社, 2003: 306.
    [10]
    邱桂辉, 任红兵, 朱勇等. 核电厂蒸汽发生器管子支撑板方孔对流场分布的影响[C]//中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集. 西安: 中国核学会, 2023.
    [11]
    GRANDOTTO M, OBRY P. Steam generator two-phase-flow numerical simulation with liquid and gas momentum equations[J]. Nuclear Science and Engineering, 2005, 151(3): 313-318. doi: 10.13182/NSE05-A2550
    [12]
    SINGHAL A K, SRIKANTIAH G. A review of thermal hydraulic analysis methodology for PWR steam generators and ATHOS3 code applications[J]. Progress in Nuclear Energy, 1991, 25(1): 7-70. doi: 10.1016/0149-1970(91)90041-M
    [13]
    史里希廷. 边界层理论(下册)[M]. 徐燕侯, 等译. 北京: 科学出版社, 1991: 655-661.
    [14]
    ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat and Mass Transfer, 1965, 87(4): 453-468.
    [15]
    阎昌琪, 曹欣荣. 核反应堆工程[M]. 哈尔滨: 哈尔滨工程大学出版社, 2004: 180.
    [16]
    EPRI. Analysis of thermal hydraulics of steam generators/steam generator analysis package, version 3.1 (volume 1, mathematical and physical models and method of solution)[Z]. 2008.
    [17]
    COËFFÉ Y, TODREAS N. Formulation of the fluid-solid interaction force for multi-dimensional, two-phase flow within tube arrays[J]. Nuclear Engineering and Design, 1980, 58(3): 383-391. doi: 10.1016/0029-5493(80)90151-X
    [18]
    LELLOUCHE G S, ZOLOTAR B A. A mechanistic model for predicting two-phase void fraction for water in vertical tubes, channels, and rod bundles: EPRI NP-2246-SR[R]. Palo Alto: Electric Power Research Institute, 1982.
    [19]
    ISHII M. Thermo-fluid dynamic theory of two-phase flow[M]. Paris: Eyrolles, 1975: 248.
    [20]
    SOUSSANF D, GRANDOTTO M. An eddy viscosity model for flow in a tube bundle[C]//. International Steam Generator and Heat Exchanger Conference. Toronto: Canadian Nuclear Society, 1998.
    [21]
    BELLIARD M. Multigrid preconditioning of Steam Generator two-phase mixture balance equations in the Genepi software[J]. Progress in Computational Fluid Dynamics, an International Journal, 2006, 6(8): 459-474. doi: 10.1504/PCFD.2006.011319
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (21) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return