| Citation: | Luo Neng, Liu Caixue, Zhu Jun, Zhou Zhengping, Luo Ting, Zhou Chengning. Research Status of Deep Learning in Equipment Condition Assessment and Its Application Prospects in Nuclear Field[J]. Nuclear Power Engineering, 2025, 46(5): 224-233. doi: 10.13832/j.jnpe.2024.10.0069 |
| [1] |
任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358.
|
| [2] |
ČEPIN M. Evaluation of the power system reliability if a nuclear power plant is replaced with wind power plants[J]. Reliability Engineering & System Safety, 2019, 185: 455-464.
|
| [3] |
李向前. 复杂装备故障预测与健康管理关键技术研究[D]. 北京: 北京理工大学, 2014.
|
| [4] |
陈志强, 陈旭东, DE OLIVIRA J V, 等. 深度学习在设备故障预测与健康管理中的应用[J]. 仪器仪表学报, 2019, 40(9): 206-226.
|
| [5] |
KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
|
| [6] |
JIA F, LEI Y G, LIN J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 303-315.
|
| [7] |
李彦夫, 韩特. 基于深度学习的工业装备PHM研究综述[J]. 振动、测试与诊断, 2022, 42(5): 835-847, 1029.
|
| [8] |
吴越, 吕菁. 基于深度学习的电力系统故障诊断与预测模型优化分析[J]. 电子技术, 2024, 53(7): 226-227. doi: 10.3969/j.issn.1000-0755.2024.07.100
|
| [9] |
陈红花, 岑健, 刘溪, 等. 深度学习在化学流程工业故障诊断的研究进展[J]. 计算机工程与应用, 2022, 58(13): 48-62. doi: 10.3778/j.issn.1002-8331.2111-0368
|
| [10] |
闫俊. 基于人工智能技术的新能源发电系统智能化故障检测研究[J]. 通讯世界, 2024, 31(9): 130-132. doi: 10.3969/j.issn.1006-4222.2024.09.044
|
| [11] |
孙见忠, 王卓健, 闫洪胜, 等. 航空预测性维修研究进展[J]. 航空学报, 2025, 46(7): 030852.
|
| [12] |
陈闯, 李先锋, 史建涛. 基于深度学习的装备剩余寿命区间预测研究进展[J]. 工程科学学报, 2024, 46(4): 723-734.
|
| [13] |
李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2012: 15-19.
|
| [14] |
PENG W W, YE Z S, CHEN N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2283-2293. doi: 10.1109/TIE.2019.2907440
|
| [15] |
赵光权, 葛强强, 刘小勇, 等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报, 2016, 37(9): 1946-1953. doi: 10.3969/j.issn.0254-3087.2016.09.004
|
| [16] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.
|
| [17] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
| [18] |
刘子旺. 转子故障的多模态深度学习信息融合诊断方法研究[D]. 北京: 中国石油大学(北京), 2018.
|
| [19] |
LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. doi: 10.1016/j.ymssp.2019.106587
|
| [20] |
ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. doi: 10.1109/TII.2019.2943898
|
| [21] |
ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425
|
| [22] |
ZHAO Z B, LI T F, WU J Y, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study[J]. ISA Transactions, 2020, 107: 224-255. doi: 10.1016/j.isatra.2020.08.010
|
| [23] |
张可, 周东华, 柴毅. 复合故障诊断技术综述[J]. 控制理论与应用, 2015, 32(9): 1143-1157. doi: 10.7641/CTA.2015.50262
|
| [24] |
张应军, 江永全, 杨燕, 等. 基于深度卷积神经网络的未知复合故障诊断[J]. 中国科技论文, 2019, 14(2): 204-209. doi: 10.3969/j.issn.2095-2783.2019.02.015
|
| [25] |
HUANG R Y, XIA J Y, ZHANG B, et al. Compound fault diagnosis for rotating machinery: state-of-the-art, challenges, and opportunities[J]. Journal of Dynamics, Monitoring and Diagnostics, 2023, 2(1): 13-29.
|
| [26] |
MUNDT M, PLIUSHCH I, MAJUMDER S, et al. Open set recognition through deep neural network uncertainty: does out-of-distribution detection require generative classifiers?[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul: IEEE, 2019: 753-757.
|
| [27] |
CHEN J M, WANG G J, LV J C, et al. Open-set classification for signal diagnosis of machinery sensor in industrial environment[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 2574-2584. doi: 10.1109/TII.2022.3169459
|
| [28] |
马亮, 彭开香, 董洁. 工业过程故障根源诊断与传播路径识别技术综述[J]. 自动化学报, 2022, 48(7): 1650-1663.
|
| [29] |
雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
|
| [30] |
彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.
|
| [31] |
QIN Y, XIANG S, CHAI Y, et al. Macroscopic–microscopic attention in LSTM networks based on fusion features for gear remaining life prediction[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10865-10875. doi: 10.1109/TIE.2019.2959492
|
| [32] |
李超杰. 基于深度学习的工业设备故障诊断和预测方法研究[D]. 兰州: 兰州交通大学, 2023.
|
| [33] |
XU Z Y, GUO Y J, SALEH J H. Accurate remaining useful life prediction with uncertainty quantification: a deep learning and nonstationary Gaussian process approach[J]. IEEE Transactions on Reliability, 2022, 71(1): 443-456. doi: 10.1109/TR.2021.3124944
|
| [34] |
王思远. 基于振动信号的旋转机械故障预测研究[D]. 太原: 太原理工大学, 2023.
|
| [35] |
王宇, 刘秋发, 彭一真. 非均匀监测条件下滚动轴承剩余寿命预测方法[J]. 机械工程学报, 2023, 59(23): 96-104.
|
| [36] |
刘峥嵘. 基于FPGA的深度强化学习硬件加速技术分析[J]. 集成电路应用, 2024, 41(2): 22-25.
|
| [37] |
余萍, 曹洁. 深度学习在故障诊断与预测中的应用[J]. 计算机工程与应用, 2020, 56(3): 1-18. doi: 10.3778/j.issn.1002-8331.1910-0221
|
| [38] |
邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638-1673. doi: 10.11897/SP.J.1016.2022.01638
|
| [39] |
丁贵广, 陈辉, 王澳, 等. 视觉深度学习模型压缩加速综述[J]. 智能系统学报, 2024, 19(5): 1072-1081.
|
| [40] |
国家发展改革委, 国家能源局, 生态环境部, 等. 关于进一步加强核电运行安全管理的指导意见: 发改能源〔2018〕765号[EB/OL]. (2018-05-22)[2024-09-30]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=14262.
|
| [41] |
张恒, 吕雪, 刘东, 等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程, 2023, 44(1): 1-8.
|
| [42] |
ZHAO X G, KIM J, WARNS K, et al. Prognostics and health management in nuclear power plants: an updated method-centric review with special focus on data-driven methods[J]. Frontiers in Energy Research, 2021, 9: 696785. doi: 10.3389/fenrg.2021.696785
|
| [43] |
NABESHIMA K, SUZUDO T, SUZUKI K, et al. Real-time nuclear power plant monitoring with neural network[J]. Journal of Nuclear Science and Technology, 1998, 35(2): 93-100. doi: 10.1080/18811248.1998.9733829
|
| [44] |
AHMED I, HEO G, KASSIM M. Fault detection and diagnosis of nuclear power plant using deep learning architecture[C]// Proceedings of the KNS 2017 Spring Meeting.Jeju, Korea: Korean Nuclear Society, 2017.
|
| [45] |
MANDAL S, SANTHI B, SRIDHAR S, et al. Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test[J]. IEEE Transactions on Nuclear Science, 2017, 64(6): 1526-1534.
|
| [46] |
ZHOU G, PENG M J, WANG H. Enhancing prediction accuracy for LOCA break sizes in nuclear power plants: A hybrid deep learning method with data augmentation and hyperparameter optimization[J]. Annals of Nuclear Energy, 2024, 196: 110208. doi: 10.1016/j.anucene.2023.110208
|
| [47] |
YIN W Z, XIA H, HUANG X Y, et al. A fault diagnosis method for nuclear power plants rotating machinery based on deep learning under imbalanced samples[J]. Annals of Nuclear Energy, 2024, 199: 110340. doi: 10.1016/j.anucene.2024.110340
|
| [48] |
QIAN G S, LIU J Q. Development of deep reinforcement learning-based fault diagnosis method for rotating machinery in nuclear power plants[J]. Progress in Nuclear Energy, 2022, 152: 104401. doi: 10.1016/j.pnucene.2022.104401
|
| [49] |
许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278.
|
| [50] |
杨泰波, 刘才学, 罗婷, 等. 基于中子噪声分析的某核电厂堆芯吊篮梁型振动特征研究[J]. 核科学与工程, 2017, 37(1): 42-47. doi: 10.3969/j.issn.0258-0918.2017.01.008
|
| [51] |
胡建荣, 吕爱林, 杨泰波, 等. 核电厂松脱事件报警及应急响应研究[J]. 核动力工程, 2018, 39(5): 181-185.
|
| [52] |
简捷, 罗婷, 刘才学, 等. 核电厂松脱部件报警案例分析[J]. 核动力工程, 2020, 41(2): 198-202.
|
| [53] |
罗婷, 刘才学, 杨泰波, 等. 宁德核电站1号机组堆芯吊篮的梁型振动特性[J]. 科学技术与工程, 2018, 18(13): 238-241.
|
| [54] |
中国核动力研究设计院.基于深度复卷积网络的屏蔽泵故障模式识别方法及系统:中国, 202011353822.X[P].2022-04-01.
|
| [55] |
曹越. 基于数据增强的小样本学习研究[D]. 成都: 电子科技大学, 2022.
|
| [56] |
LI W H, CHEN Z Y, HE G L. A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1753-1762. doi: 10.1109/TII.2020.2994621
|
| [57] |
文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248.
|
| [58] |
PAN X, ZHANG H Y, GAO J J, et al. Artificial self-recovery opens up a new journey of autonomous health of mechanical equipments[J]. Engineering, 2024, 37: 22-26. doi: 10.1016/j.eng.2024.01.029
|
| [59] |
高金吉. 工业互联网赋能装备智能运维与自主健康[J]. 计算机集成制造系统, 2019, 25(12): 3013-3025.
|
| [60] |
王飞跃, 孙奇, 江国进, 等. 核能5.0: 智能时代的核电工业新形态与体系架构[J]. 自动化学报, 2018, 44(5): 922-934.
|
| [61] |
蒋翔宇, 冯毅雄, 张志峰, 等. 人-信息-物理协同下核电设备可演进式剩余寿命估计[J]. 机械工程学报, 2025, 61(4): 302-313.
|