Advance Search
Volume 46 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Luo Neng, Liu Caixue, Zhu Jun, Zhou Zhengping, Luo Ting, Zhou Chengning. Research Status of Deep Learning in Equipment Condition Assessment and Its Application Prospects in Nuclear Field[J]. Nuclear Power Engineering, 2025, 46(5): 224-233. doi: 10.13832/j.jnpe.2024.10.0069
Citation: Luo Neng, Liu Caixue, Zhu Jun, Zhou Zhengping, Luo Ting, Zhou Chengning. Research Status of Deep Learning in Equipment Condition Assessment and Its Application Prospects in Nuclear Field[J]. Nuclear Power Engineering, 2025, 46(5): 224-233. doi: 10.13832/j.jnpe.2024.10.0069

Research Status of Deep Learning in Equipment Condition Assessment and Its Application Prospects in Nuclear Field

doi: 10.13832/j.jnpe.2024.10.0069
  • Received Date: 2024-10-16
  • Accepted Date: 2025-01-22
  • Rev Recd Date: 2025-01-21
  • Available Online: 2025-10-15
  • Publish Date: 2025-10-15
  • With the wide application of nuclear energy in various industries around the world, condition assessment of reactor electromechanical equipment is facing higher requirements in terms of coverage, real-time, economy and accuracy. Traditional methods based on physical simulation, expert knowledge or data-driven approaches are difficult to meet these new challenges. Starting from the research idea of deep learning in equipment condition assessment, this paper centers on the four core tasks of equipment condition identification, fault diagnosis, fault prediction, and deployment and application of condition assessment models, systematically sorts out the status and shortcomings of current research, and reviews and looks forward to the application of deep learning in equipment condition assessment in the nuclear field. On this basis, an equipment condition assessment technology system based on knowledge and data fusion iteration is proposed, which clarifies the direction of future technology research and provides new ideas and methods for intelligent operation and maintenance of nuclear energy equipment.

     

  • loading
  • [1]
    任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358.
    [2]
    ČEPIN M. Evaluation of the power system reliability if a nuclear power plant is replaced with wind power plants[J]. Reliability Engineering & System Safety, 2019, 185: 455-464.
    [3]
    李向前. 复杂装备故障预测与健康管理关键技术研究[D]. 北京: 北京理工大学, 2014.
    [4]
    陈志强, 陈旭东, DE OLIVIRA J V, 等. 深度学习在设备故障预测与健康管理中的应用[J]. 仪器仪表学报, 2019, 40(9): 206-226.
    [5]
    KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
    [6]
    JIA F, LEI Y G, LIN J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 303-315.
    [7]
    李彦夫, 韩特. 基于深度学习的工业装备PHM研究综述[J]. 振动、测试与诊断, 2022, 42(5): 835-847, 1029.
    [8]
    吴越, 吕菁. 基于深度学习的电力系统故障诊断与预测模型优化分析[J]. 电子技术, 2024, 53(7): 226-227. doi: 10.3969/j.issn.1000-0755.2024.07.100
    [9]
    陈红花, 岑健, 刘溪, 等. 深度学习在化学流程工业故障诊断的研究进展[J]. 计算机工程与应用, 2022, 58(13): 48-62. doi: 10.3778/j.issn.1002-8331.2111-0368
    [10]
    闫俊. 基于人工智能技术的新能源发电系统智能化故障检测研究[J]. 通讯世界, 2024, 31(9): 130-132. doi: 10.3969/j.issn.1006-4222.2024.09.044
    [11]
    孙见忠, 王卓健, 闫洪胜, 等. 航空预测性维修研究进展[J]. 航空学报, 2025, 46(7): 030852.
    [12]
    陈闯, 李先锋, 史建涛. 基于深度学习的装备剩余寿命区间预测研究进展[J]. 工程科学学报, 2024, 46(4): 723-734.
    [13]
    李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2012: 15-19.
    [14]
    PENG W W, YE Z S, CHEN N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2283-2293. doi: 10.1109/TIE.2019.2907440
    [15]
    赵光权, 葛强强, 刘小勇, 等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报, 2016, 37(9): 1946-1953. doi: 10.3969/j.issn.0254-3087.2016.09.004
    [16]
    CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.
    [17]
    BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [18]
    刘子旺. 转子故障的多模态深度学习信息融合诊断方法研究[D]. 北京: 中国石油大学(北京), 2018.
    [19]
    LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. doi: 10.1016/j.ymssp.2019.106587
    [20]
    ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. doi: 10.1109/TII.2019.2943898
    [21]
    ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425
    [22]
    ZHAO Z B, LI T F, WU J Y, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study[J]. ISA Transactions, 2020, 107: 224-255. doi: 10.1016/j.isatra.2020.08.010
    [23]
    张可, 周东华, 柴毅. 复合故障诊断技术综述[J]. 控制理论与应用, 2015, 32(9): 1143-1157. doi: 10.7641/CTA.2015.50262
    [24]
    张应军, 江永全, 杨燕, 等. 基于深度卷积神经网络的未知复合故障诊断[J]. 中国科技论文, 2019, 14(2): 204-209. doi: 10.3969/j.issn.2095-2783.2019.02.015
    [25]
    HUANG R Y, XIA J Y, ZHANG B, et al. Compound fault diagnosis for rotating machinery: state-of-the-art, challenges, and opportunities[J]. Journal of Dynamics, Monitoring and Diagnostics, 2023, 2(1): 13-29.
    [26]
    MUNDT M, PLIUSHCH I, MAJUMDER S, et al. Open set recognition through deep neural network uncertainty: does out-of-distribution detection require generative classifiers?[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul: IEEE, 2019: 753-757.
    [27]
    CHEN J M, WANG G J, LV J C, et al. Open-set classification for signal diagnosis of machinery sensor in industrial environment[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 2574-2584. doi: 10.1109/TII.2022.3169459
    [28]
    马亮, 彭开香, 董洁. 工业过程故障根源诊断与传播路径识别技术综述[J]. 自动化学报, 2022, 48(7): 1650-1663.
    [29]
    雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
    [30]
    彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.
    [31]
    QIN Y, XIANG S, CHAI Y, et al. Macroscopic–microscopic attention in LSTM networks based on fusion features for gear remaining life prediction[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10865-10875. doi: 10.1109/TIE.2019.2959492
    [32]
    李超杰. 基于深度学习的工业设备故障诊断和预测方法研究[D]. 兰州: 兰州交通大学, 2023.
    [33]
    XU Z Y, GUO Y J, SALEH J H. Accurate remaining useful life prediction with uncertainty quantification: a deep learning and nonstationary Gaussian process approach[J]. IEEE Transactions on Reliability, 2022, 71(1): 443-456. doi: 10.1109/TR.2021.3124944
    [34]
    王思远. 基于振动信号的旋转机械故障预测研究[D]. 太原: 太原理工大学, 2023.
    [35]
    王宇, 刘秋发, 彭一真. 非均匀监测条件下滚动轴承剩余寿命预测方法[J]. 机械工程学报, 2023, 59(23): 96-104.
    [36]
    刘峥嵘. 基于FPGA的深度强化学习硬件加速技术分析[J]. 集成电路应用, 2024, 41(2): 22-25.
    [37]
    余萍, 曹洁. 深度学习在故障诊断与预测中的应用[J]. 计算机工程与应用, 2020, 56(3): 1-18. doi: 10.3778/j.issn.1002-8331.1910-0221
    [38]
    邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638-1673. doi: 10.11897/SP.J.1016.2022.01638
    [39]
    丁贵广, 陈辉, 王澳, 等. 视觉深度学习模型压缩加速综述[J]. 智能系统学报, 2024, 19(5): 1072-1081.
    [40]
    国家发展改革委, 国家能源局, 生态环境部, 等. 关于进一步加强核电运行安全管理的指导意见: 发改能源〔2018〕765号[EB/OL]. (2018-05-22)[2024-09-30]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=14262.
    [41]
    张恒, 吕雪, 刘东, 等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程, 2023, 44(1): 1-8.
    [42]
    ZHAO X G, KIM J, WARNS K, et al. Prognostics and health management in nuclear power plants: an updated method-centric review with special focus on data-driven methods[J]. Frontiers in Energy Research, 2021, 9: 696785. doi: 10.3389/fenrg.2021.696785
    [43]
    NABESHIMA K, SUZUDO T, SUZUKI K, et al. Real-time nuclear power plant monitoring with neural network[J]. Journal of Nuclear Science and Technology, 1998, 35(2): 93-100. doi: 10.1080/18811248.1998.9733829
    [44]
    AHMED I, HEO G, KASSIM M. Fault detection and diagnosis of nuclear power plant using deep learning architecture[C]// Proceedings of the KNS 2017 Spring Meeting.Jeju, Korea: Korean Nuclear Society, 2017.
    [45]
    MANDAL S, SANTHI B, SRIDHAR S, et al. Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test[J]. IEEE Transactions on Nuclear Science, 2017, 64(6): 1526-1534.
    [46]
    ZHOU G, PENG M J, WANG H. Enhancing prediction accuracy for LOCA break sizes in nuclear power plants: A hybrid deep learning method with data augmentation and hyperparameter optimization[J]. Annals of Nuclear Energy, 2024, 196: 110208. doi: 10.1016/j.anucene.2023.110208
    [47]
    YIN W Z, XIA H, HUANG X Y, et al. A fault diagnosis method for nuclear power plants rotating machinery based on deep learning under imbalanced samples[J]. Annals of Nuclear Energy, 2024, 199: 110340. doi: 10.1016/j.anucene.2024.110340
    [48]
    QIAN G S, LIU J Q. Development of deep reinforcement learning-based fault diagnosis method for rotating machinery in nuclear power plants[J]. Progress in Nuclear Energy, 2022, 152: 104401. doi: 10.1016/j.pnucene.2022.104401
    [49]
    许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278.
    [50]
    杨泰波, 刘才学, 罗婷, 等. 基于中子噪声分析的某核电厂堆芯吊篮梁型振动特征研究[J]. 核科学与工程, 2017, 37(1): 42-47. doi: 10.3969/j.issn.0258-0918.2017.01.008
    [51]
    胡建荣, 吕爱林, 杨泰波, 等. 核电厂松脱事件报警及应急响应研究[J]. 核动力工程, 2018, 39(5): 181-185.
    [52]
    简捷, 罗婷, 刘才学, 等. 核电厂松脱部件报警案例分析[J]. 核动力工程, 2020, 41(2): 198-202.
    [53]
    罗婷, 刘才学, 杨泰波, 等. 宁德核电站1号机组堆芯吊篮的梁型振动特性[J]. 科学技术与工程, 2018, 18(13): 238-241.
    [54]
    中国核动力研究设计院.基于深度复卷积网络的屏蔽泵故障模式识别方法及系统:中国, 202011353822.X[P].2022-04-01.
    [55]
    曹越. 基于数据增强的小样本学习研究[D]. 成都: 电子科技大学, 2022.
    [56]
    LI W H, CHEN Z Y, HE G L. A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1753-1762. doi: 10.1109/TII.2020.2994621
    [57]
    文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248.
    [58]
    PAN X, ZHANG H Y, GAO J J, et al. Artificial self-recovery opens up a new journey of autonomous health of mechanical equipments[J]. Engineering, 2024, 37: 22-26. doi: 10.1016/j.eng.2024.01.029
    [59]
    高金吉. 工业互联网赋能装备智能运维与自主健康[J]. 计算机集成制造系统, 2019, 25(12): 3013-3025.
    [60]
    王飞跃, 孙奇, 江国进, 等. 核能5.0: 智能时代的核电工业新形态与体系架构[J]. 自动化学报, 2018, 44(5): 922-934.
    [61]
    蒋翔宇, 冯毅雄, 张志峰, 等. 人-信息-物理协同下核电设备可演进式剩余寿命估计[J]. 机械工程学报, 2025, 61(4): 302-313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (23) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return