Citation: | He Ying, Qiu Meiming, Ma Yugao, Liu Guodong, Huang Shanfang, Wang Kan. High-fidelity Neutronic, Thermal-Mechanical and Heat Pipe Heat Transfer Study of Solid-state Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 13-20. doi: 10.13832/j.jnpe.2025.S1.0013 |
[1] |
陈宁. 移动式热管小堆非能动流动换热计算研究[D]. 北京: 华北电力大学(北京),2022.
|
[2] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
|
[3] |
YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948
|
[4] |
MA Y G, LIU M Y, XIE B H, et al. Neutronic and thermal-mechanical coupling schemes for heat pipe-cooled reactor designs[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(2): 021303. doi: 10.1115/1.4051612
|
[5] |
MA Y G, HAN W B, XIE B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. doi: 10.1016/j.nucengdes.2021.111473
|
[6] |
MA Y G, CHEN E H, YU H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755
|
[7] |
XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
|
[8] |
CHEN C, MEI H P, WANG Z, et al. Study of the thermal expansion effects of a space nuclear reactor with an integrated honeycomb core design using OpenMC and ANSYS[J]. Annals of Nuclear Energy, 2023, 191: 109901. doi: 10.1016/j.anucene.2023.109901
|
[9] |
WU A G, WANG W X, ZHANG K F, et al. Multiphysics coupling analysis of heat pipe reactor based on OpenMC and COMSOL Multiphysics[J]. Annals of Nuclear Energy, 2023, 194: 110115. doi: 10.1016/j.anucene.2023.110115
|
[10] |
柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195.
|
[11] |
马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196.
|
[12] |
GUO Y C, LI Z G, WANG K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102-114.
|
[13] |
郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核—热—力”耦合方法研究[J]. 中国基础科学,2021, 23(3): 51-58. doi: 10.3969/j.issn.1009-2412.2021.03.008
|
[14] |
谢碧衡. 基于RMC和MOOSE的热管堆有限元耦合程序开发[D]. 北京: 清华大学,2022.
|
[15] |
CHEN H L, WANG W X, WU A G, et al. Multi-physics coupling analysis of test heat pipe reactor KRUSTY based on MOOSE framework[J]. Nuclear Engineering and Design, 2023, 414: 112597. doi: 10.1016/j.nucengdes.2023.112597
|
[16] |
WANG K, LI Z G, SHE D, et al. RMC–A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
|
[17] |
MA Y G, ZHANG Y N, YU H X, et al. Capillary evaporating film model for a screen-wick heat pipe[J]. Applied Thermal Engineering, 2023, 225: 120155. doi: 10.1016/j.applthermaleng.2023.120155
|
[18] |
钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108.
|
[19] |
MA Y G, LIU M Y, CHEN E H, et al. RMC/ANSYS multi-physics coupling solutions for heat pipe cooled reactors analyses[J]. EPJ Web of Conferences, 2021, 247: 06007. doi: 10.1051/epjconf/202124706007
|