Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Xue Yanfang, Wang Dingsheng, Sun Yanyu, Huang Zheng, Zhang Shuoting, Fang Jun, Han Shichao, Liu Guoming, Chen Qiaoyan. Design and Analysis of Integrated Heat Transfer Test Facility for Gas-Cooled Microreactor Core Components[J]. Nuclear Power Engineering, 2025, 46(S1): 131-136. doi: 10.13832/j.jnpe.2025.S1.0131
Citation: Xue Yanfang, Wang Dingsheng, Sun Yanyu, Huang Zheng, Zhang Shuoting, Fang Jun, Han Shichao, Liu Guoming, Chen Qiaoyan. Design and Analysis of Integrated Heat Transfer Test Facility for Gas-Cooled Microreactor Core Components[J]. Nuclear Power Engineering, 2025, 46(S1): 131-136. doi: 10.13832/j.jnpe.2025.S1.0131

Design and Analysis of Integrated Heat Transfer Test Facility for Gas-Cooled Microreactor Core Components

doi: 10.13832/j.jnpe.2025.S1.0131
  • Received Date: 2025-02-19
  • Rev Recd Date: 2025-03-12
  • Publish Date: 2025-07-09
  • In response to the requirements for comprehensive heat transfer testing of gas-cooled microreactor core components, this study conducted detailed design and analysis of the test facility. The research encompassed the design principles of the test facility, determination of key parameters, structural design of the test section, and optimization of the startup process. Numerical simulation and pre-analysis methods were employed to systematically investigate the startup process of the test facility and the design scheme of the test section. The results indicate that the startup process control of the test facility is reasonable, and the structural design of the test section meets technical requirements, achieving design targets of 50℃ at the helium fan inlet, 489℃ at the core inlet, and 750℃ at the core outlet, while maintaining a stable helium pressure of 1.6 MPa at the test loop inlet. The comparison between experimental data and simulation results for graphite temperature demonstrates good consistency, validating the reliability of the computational model. The research results not only provide a feasible validation test platform for comprehensive heat transfer testing of gas-cooled microreactor core components, but also lay an important foundation for the subsequent development and verification of high-temperature helium equipment components.

     

  • loading
  • [1]
    吴宗鑫,张作义. 先进核能系统和高温气冷堆[M]. 北京: 清华大学出版社,2004: 1-2.
    [2]
    U. S. Department of Energy. A technology roadmap for generation IV nuclear energy systems: GIF-002-00[R]. Washington: U. S. Department of Energy, 2002.
    [3]
    International Atomic Energy Agency. Small modular reactor: IAEA/PAT/008[R]. Vienna: IAEA, 2024.
    [4]
    张成龙,堵树宏,刘国明,等. 小型模块化超级安全气冷堆中子学特性研究[J]. 核动力工程,2019, 40(6): 13-19.
    [5]
    张成龙,刘国明,贺楷,等. 气冷微堆燃料设计的中子学特性影响研究[J]. 原子能科学技术,2021, 55(11): 2062-2069. doi: 10.7538/yzk.2021.youxian.0026
    [6]
    张成龙,袁媛,刘国明,等. 棱柱式超级安全气冷堆堆芯物理特性研究[J]. 原子能科学技术,2023, 57(1): 156-164. doi: 10.7538/yzk.2022.youxian.0062
    [7]
    U. S. Nuclear Regulatory Commission. Next generation nuclear plant phenomena identification and ranking tables (PIRTs): NUREG/CR-6944[R]. Washington: U. S. Nuclear Regulatory Commission, 2008.
    [8]
    陈福冰,陈志鹏,郑艳华,等. 现象识别与分级表在高温气冷堆程序验证中的应用[J]. 原子能科学技术,2015, 49(S1): 415-419.
    [9]
    GOU F, CHEN F B, DONG Y J. Preliminary phenomena identification and ranking tables on the subject of the high temperature gas-cooled reactor-pebble bed module thermal fluids and accident analysis[J]. Nuclear Engineering and Design, 2018, 332: 11-21.
    [10]
    刘吉,杨明德,党杰,等. 大型氦气工程试验回路管路系统泄漏检测技术研究[J]. 核科学与工程,2015, 35(2): 289-294. doi: 10.3969/j.issn.0258-0918.2015.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (3) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return