Citation: | Hou Yunan, Zhang Bin. Analysis of Factors Influencing the Accuracy of 3-D Flux Synthesis in Nuclear Reactor Primary Shielding[J]. Nuclear Power Engineering, 2025, 46(S1): 166-180. doi: 10.13832/j.jnpe.2025.S1.0166 |
[1] |
CAREW J F, HU K, ARONSON A, et al. PWR and BWR pressure vessel fluence calculation benchmark problems and solutions: NUREG/CR-6115[R]. Washington: Division of Engineering Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2001.
|
[2] |
U. S. Nuclear Regulatory Commission. Radiation embrittlement of reactor vessel materials: Regulatory Guide 1.99[R]. Rockville: U. S. Nuclear Regulatory Commission, 1988.
|
[3] |
PETROVIC B G, HAGHIGHAT A. Effects of SN method numerics on pressure vessel neutron fluence calculations[J]. Nuclear Science and Engineering, 1996, 122(2): 167-193. doi: 10.13182/NSE96-3
|
[4] |
BOEHMER B, BORODKIN G, KONHEISER J, et al. Testing of neutron data libraries in application to reactor pressure vessel dosimetry[J]. Journal of Nuclear Science and Technology, 2002, 39(S2): 1006-1009.
|
[5] |
KULESZA J A. Comparison of three-dimensional flux synthesis and full three-dimensional discrete ordinates methods for the calculation of reactor cavity bioshield heat generation rates[J]. Nuclear Technology, 2011, 175(1): 228-237. doi: 10.13182/NT11-A12294
|
[6] |
LIM M J, MAENG Y J, FERO A H, et al. Comparison of analysis results between 2D/1D synthesis and RAPTOR-M3G in the Korea standard nuclear plant (KSNP)[J]. EPJ Web of Conferences, 2016, 106: 03001. doi: 10.1051/epjconf/201610603001
|
[7] |
夏春梅,梅其良,丁谦学,等. DORT程序进行RPV中子注量率计算的可靠性验证[J]. 核科学与工程,2016, 36(3): 329-334. doi: 10.3969/j.issn.0258-0918.2016.03.005
|
[8] |
CHEN J, ALPAN F A, FISCHER G A, et al. Ex-vessel neutron dosimetry analysis for Westinghouse 4-Loop XL pressurized water reactor plant using 3D parallel discrete ordinates code RAPTOR-M3G[J]. Journal of ASTM International, 2012, 9(4): 1-11.
|
[9] |
U. S. Nuclear Regulatory Commission. Calculational and dosimetry methods for determining pressure vessel neutron fluence: Regulatory Guide 1.190[R]. Washington: U. S. Nuclear Regulatory Commission, 2001.
|
[10] |
KIM D H, GIL C S, LEE Y O. Validation of an ENDF/B-VII. 0-based neutron and photon shielding library in MATXS-format[J]. Journal of the Korean Physical Society, 2011, 59(2): 1199-1202.
|
[11] |
张平逊,张斌,陈义学. 核反应堆屏蔽计算堆芯中子源强生成方法研究[J]. 核技术,2023, 46(5): 056003.
|
[12] |
ORSI R. BOT3P-Bologna transport analysis pre-post-processors version 3.0[J]. Nuclear Science and Engineering, 2004, 146(2): 248-255. doi: 10.13182/NSE04-A2408
|
[13] |
RHOADES W A, CHILDS R L. The DORT two-dimensional discrete ordinates transport code[J]. Nuclear Science and Engineering, 1988, 99(1): 88-89. doi: 10.13182/NSE88-A23547
|
[14] |
MACFARLANE R E. TRANSX 2: a code for interfacing MATXS cross-section libraries to nuclear transport codes: LA-12312-MS[R]. Los Alamos National Laboratory, 1992.
|
[15] |
Nuclear Energy Agency. Prediction of neutron embrittlement in the reactor pressure vessel: VENUS-1 and VENUS-3 benchmarks[R]. Paris: Organisation for Economic Co-Operation and Development, 2000: 239.
|
[16] |
RHOADES W A, SIMPSON D B. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3): ORNL/TM-13221[R]. Oak Ridge: Oak Ridge National Laboratory, 1997.
|
[17] |
REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark: NUREG/CR-6453[R]. Washington: US Nuclear Regulatory Commission, 1998.
|
[18] |
ZHANG L, ZHANG B, LIU C, et al. Calculation of the C5G7 3-D extension benchmark by ARES transport code[J]. Nuclear Engineering and Design, 2017, 318: 231-238. doi: 10.1016/j.nucengdes.2017.04.011
|