Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Dai Ming, Cheng Maosong. Development and Validation of Assembly Calculation Module in 3D Neutron Transport Code for Molten Salt Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 192-199. doi: 10.13832/j.jnpe.2025.S1.0192
Citation: Dai Ming, Cheng Maosong. Development and Validation of Assembly Calculation Module in 3D Neutron Transport Code for Molten Salt Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 192-199. doi: 10.13832/j.jnpe.2025.S1.0192

Development and Validation of Assembly Calculation Module in 3D Neutron Transport Code for Molten Salt Reactors

doi: 10.13832/j.jnpe.2025.S1.0192
  • Received Date: 2025-04-06
  • Rev Recd Date: 2025-04-24
  • Publish Date: 2025-06-15
  • The three-dimensional (3D) neutron transport code ThorMOC for molten salt reactors (MSRs) utilizes the non-uniform spectra modification method to provide few-group cross sections for full-core transport calculations, which relies on the multi-group effective macroscopic cross sections from assembly or super-assembly calculations. For MSR assembly or super-assembly with 3D complex shape resonance regions, an Embedded Self-Shielding Method (ESSM) based on the SHEM361 multi-group data library had been developed within ThorMOC by leveraging its existing quasi-3D method of characteristics (MOC) solver, which is enhanced by GPU parallelization and the coarse-mesh MOC-based synthetic acceleration (MSA) technique, thereby enabling MSR assembly calculations in ThorMOC. For a cylindrical channel molten salt reactor, numerical analysis is conducted on seven types of assemblies, including three 3D super-assemblies with upper and lower support plates and cavities. Compared to results from the continuous-energy Monte Carlo method, the maximum keff relative deviation is −110pcm (1pcm=10−5). The numerical results demonstrate that the implemented assembly calculation module is effective for the calculations of MSR assemblies with 3D complex shape resonance regions.

     

  • loading
  • [1]
    陈亮,朱贵凤,王子业,等. 基于熔盐堆尾气提取的99Mo生产评估[J]. 核技术,2024, 47(8): 080604. doi: 10.11889/j.0253-3219.2024.hjs.47.080604
    [2]
    刘宙宇,许晓北,温兴坚,等. 确定论数值反应堆程序NECP-X的开发及应用[J]. 原子能科学技术,2022, 56(2): 226-238. doi: 10.7538/yzk.2021.youxian.0930
    [3]
    张宏博,赵晨,彭星杰,等. 数字化反应堆高保真中子学程序SHARK研发[J]. 原子能科学技术,2022, 56(2): 334-342. doi: 10.7538/yzk.2021.youxian.0902
    [4]
    俞陆林,杨高升,陈国华,等. 基于GPU加速的三维堆芯物理程序STORK的开发与验证[J]. 原子能科学技术,2024, 58(3): 662-671. doi: 10.7538/yzk.2023.youxian.0657
    [5]
    FEI T, FENG B, HEIDET F. Molten salt reactor core simulation with PROTEUS[J]. Annals of Nuclear Energy, 2020, 140: 107099. doi: 10.1016/j.anucene.2019.107099
    [6]
    ZHANG A, DAI M, CHENG M S, et al. High-fidelity neutronics simulation of channel-type molten salt reactors[J]. Nuclear Engineering and Design, 2023, 401: 112063. doi: 10.1016/j.nucengdes.2022.112063
    [7]
    DAI M, CHENG M S. A low order MOC-based synthetic acceleration scheme of the MOC neutron transport method for molten salt reactors[J]. Annals of Nuclear Energy, 2024, 208: 110789. doi: 10.1016/j.anucene.2024.110789
    [8]
    GRAHAM A M, TAYLOR Z, COLLINS B S, et al. Multiphysics coupling methods for molten salt reactor modeling and simulation in VERA[J]. Nuclear Science and Engineering, 2021, 195(10): 1065-1086. doi: 10.1080/00295639.2021.1901000
    [9]
    DAI M, ZHANG A, CHENG M S. Improvement of the 3D MOC/DD neutron transport method with thin axial meshes[J]. Annals of Nuclear Energy, 2023, 185: 109731. doi: 10.1016/j.anucene.2023.109731
    [10]
    ZHANG A, DAI M, CHENG M S, et al. Development of a GPU-based three-dimensional neutron transport code[J]. Annals of Nuclear Energy, 2022, 174: 109156. doi: 10.1016/j.anucene.2022.109156
    [11]
    戴明,张奥,程懋松. 基于非均匀谱修正方法的熔盐堆少群截面计算[J]. 核动力工程,2024, 45(5): 62-70.
    [12]
    戴明,张奥,程懋松. ESSM和Tone方法在熔盐堆共振计算中的适用性分析[J]. 核技术,2022, 45(9): 090605.
    [13]
    DAI M, CHENG M S. Application of material-mesh algebraic collapsing acceleration technique in method of characteristics-based neutron transport code[J]. Nuclear Science and Techniques, 2021, 32(8): 95-109.
    [14]
    SALINO V, HÉBERT A. PyNjoy2016: an open source system for producing cross sections libraries for DRAGON5 and SERPENT2[C]//M&C 2023 - The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Niagara Falls, Canada: ANS, 2023: 1-10.
    [15]
    ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [16]
    HÉBERT A. Application of Tone's and embedded self-shielding methods to pressurized water reactor assemblies[J]. Annals of Nuclear Energy, 2018, 112: 439-449. doi: 10.1016/j.anucene.2017.10.031
    [17]
    张广春,刘杰,YANG W S. PROTEUS-MOC在TREAT试验堆稳态中子学计算中的应用[J]. 核技术,2020, 43(4): 040008. doi: 10.11889/j.0253-3219.2020.hjs.43.040008
    [18]
    LIU Y F, YAN R, ZOU Y, et al. Sensitivity/uncertainty comparison and similarity analysis between TMSR-LF1 and MSR models[J]. Progress in Nuclear Energy, 2020, 122: 103289. doi: 10.1016/j.pnucene.2020.103289
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (2) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return