Citation: | Zhuang Nailiang, Song Yongnian, Yin Zhengda, Zhao Hangbin. Design of 40 kW Dual-drum Controlled Liquid Molten Salt Reactor in Catalogue: Neutronics and Dual-drum Worth Analysis[J]. Nuclear Power Engineering, 2025, 46(S1): 207-212. doi: 10.13832/j.jnpe.2025.S1.0207 |
[1] |
吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学: 技术科学,2019, 49(1): 1-12.
|
[2] |
EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10): 833-849. doi: 10.1016/j.actaastro.2008.12.016
|
[3] |
KAMBE M, TSUNODA H, MISHIMA K, et al. Rapid-L operator-free fast reactor concept without any control rods[J]. Nuclear Technology, 2003, 143(1): 11-21. doi: 10.13182/NT03-A3394
|
[4] |
KING J C, EL-GENK M S. Submersion-Subcritical Safe Space (S4) reactor[J]. Nuclear Engineering and Design, 2006, 236(17): 1759-1777. doi: 10.1016/j.nucengdes.2005.12.010
|
[5] |
POSTON D I, GIBSON M, MCCLURE P. Kilopower reactors for potential space exploration missions[C]. Richland: Proceedings of the Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting, 2019.
|
[6] |
EADES M. Development of molten salt reactor technology for space[D]. Columbus: The Ohio State University, 2012.
|
[7] |
KIMURA R, YOSHIDA T. Design study of molten-salt-type reactor for powering space probes and its automated start-up[J]. Journal of Nuclear Science and Technology, 2013, 50(10): 998-1010. doi: 10.1080/00223131.2013.829284
|
[8] |
李婷,庄坤,尚文,等. 熔盐冷却空间堆的初步中子学设计[J]. 核技术,2020, 43(8): 080006. doi: 10.11889/j.0253-3219.2020.hjs.43.080006
|
[9] |
CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670
|
[10] |
于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 050603. doi: 10.11889/j.0253-3219.2020.hjs.43.050603
|
[11] |
SCHRIENER T M, EL-GENK M S. Reactivity control options of space nuclear reactors[J]. Progress in Nuclear Energy, 2009, 51(3): 526-542. doi: 10.1016/j.pnucene.2008.11.003
|
[12] |
CRAFT A E, KING J C. Reactivity control schemes for fast spectrum space nuclear reactors[J]. Nuclear Engineering and Design, 2011, 241(5): 1516-1528. doi: 10.1016/j.nucengdes.2011.01.049
|
[13] |
MENG T, CHENG K, ZENG C, et al. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations[J]. Progress in Nuclear Energy, 2019, 113: 135-144. doi: 10.1016/j.pnucene.2019.01.013
|
[14] |
KING J C, EL-GENK M S. A methodology for the neutronics design of space nuclear reactors[J]. AIP Conference Proceedings, 2004, 699(1): 319-329.
|
[15] |
杨谢,佘顶,石磊. 棱柱式高温气冷空间核反应堆初步方案设计与中子物理分析[J]. 原子能科学技术,2017, 51(12): 2288-2293. doi: 10.7538/yzk.2017.51.12.2288
|
[16] |
DEMUTH S F. SP100 space reactor design[J]. Progress in Nuclear Energy, 2003, 42(3): 323-359. doi: 10.1016/S0149-1970(03)90003-5
|
[17] |
LEE H C, HAN T Y, LIM H S, et al. An accident-tolerant control drum system for a small space reactor[J]. Annals of Nuclear Energy, 2015, 79: 143-151. doi: 10.1016/j.anucene.2015.02.001
|
[18] |
DEWAN L. Molecular dynamics simulation and topological analysis of the network structure of actinide-bearing materials[D]. Cambridge: Massachusetts Institute of Technology, 2013.
|