Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Zhuang Nailiang, Song Yongnian, Yin Zhengda, Zhao Hangbin. Design of 40 kW Dual-drum Controlled Liquid Molten Salt Reactor in Catalogue: Neutronics and Dual-drum Worth Analysis[J]. Nuclear Power Engineering, 2025, 46(S1): 207-212. doi: 10.13832/j.jnpe.2025.S1.0207
Citation: Zhuang Nailiang, Song Yongnian, Yin Zhengda, Zhao Hangbin. Design of 40 kW Dual-drum Controlled Liquid Molten Salt Reactor in Catalogue: Neutronics and Dual-drum Worth Analysis[J]. Nuclear Power Engineering, 2025, 46(S1): 207-212. doi: 10.13832/j.jnpe.2025.S1.0207

Design of 40 kW Dual-drum Controlled Liquid Molten Salt Reactor in Catalogue: Neutronics and Dual-drum Worth Analysis

doi: 10.13832/j.jnpe.2025.S1.0207
  • Received Date: 2025-02-19
  • Rev Recd Date: 2025-04-16
  • Publish Date: 2025-06-15
  • The heat source (power supply) of nuclear fission reactor is expected to be applied to deep space exploration, catalog scientific research station, interstellar navigation and other fields in the future due to its many advantages, such as no demand for solar orientation, small impact from space environment, large power range and large regulation range. Based on the fourth generation nuclear reactor technology—molten salt reactor, this paper proposes a conceptual design for a 40 kW space nuclear reactor utilizing liquid molten salt as nuclear fuel coupled with heat pipe cooling. A new reactivity control strategy combining control drum (for power regulation) and safety drum (for emergency shutdown) is proposed. The physical model of liquid molten salt space nuclear reactor is established, and the key physical characteristics of the core, such as neutron energy spectrum, neutron flux distribution, temperature effect and burnup depth, are obtained based on the Monte Carlo code MCNP and RMC analysis. The influence of control drum angle on reactivity and the reactivity control and core safety under partial failure of dual drums are further analyzed. The results show that the liquid molten salt space nuclear reactor designed in this paper can operate at full power for 10 years. The control drum arrangement can meet the core safety requirements under the failure of some control drums. This research can provide design reference for the control strategy of space liquid molten salt reactor and space reactor.

     

  • loading
  • [1]
    吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学: 技术科学,2019, 49(1): 1-12.
    [2]
    EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10): 833-849. doi: 10.1016/j.actaastro.2008.12.016
    [3]
    KAMBE M, TSUNODA H, MISHIMA K, et al. Rapid-L operator-free fast reactor concept without any control rods[J]. Nuclear Technology, 2003, 143(1): 11-21. doi: 10.13182/NT03-A3394
    [4]
    KING J C, EL-GENK M S. Submersion-Subcritical Safe Space (S4) reactor[J]. Nuclear Engineering and Design, 2006, 236(17): 1759-1777. doi: 10.1016/j.nucengdes.2005.12.010
    [5]
    POSTON D I, GIBSON M, MCCLURE P. Kilopower reactors for potential space exploration missions[C]. Richland: Proceedings of the Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting, 2019.
    [6]
    EADES M. Development of molten salt reactor technology for space[D]. Columbus: The Ohio State University, 2012.
    [7]
    KIMURA R, YOSHIDA T. Design study of molten-salt-type reactor for powering space probes and its automated start-up[J]. Journal of Nuclear Science and Technology, 2013, 50(10): 998-1010. doi: 10.1080/00223131.2013.829284
    [8]
    李婷,庄坤,尚文,等. 熔盐冷却空间堆的初步中子学设计[J]. 核技术,2020, 43(8): 080006. doi: 10.11889/j.0253-3219.2020.hjs.43.080006
    [9]
    CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670
    [10]
    于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 050603. doi: 10.11889/j.0253-3219.2020.hjs.43.050603
    [11]
    SCHRIENER T M, EL-GENK M S. Reactivity control options of space nuclear reactors[J]. Progress in Nuclear Energy, 2009, 51(3): 526-542. doi: 10.1016/j.pnucene.2008.11.003
    [12]
    CRAFT A E, KING J C. Reactivity control schemes for fast spectrum space nuclear reactors[J]. Nuclear Engineering and Design, 2011, 241(5): 1516-1528. doi: 10.1016/j.nucengdes.2011.01.049
    [13]
    MENG T, CHENG K, ZENG C, et al. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations[J]. Progress in Nuclear Energy, 2019, 113: 135-144. doi: 10.1016/j.pnucene.2019.01.013
    [14]
    KING J C, EL-GENK M S. A methodology for the neutronics design of space nuclear reactors[J]. AIP Conference Proceedings, 2004, 699(1): 319-329.
    [15]
    杨谢,佘顶,石磊. 棱柱式高温气冷空间核反应堆初步方案设计与中子物理分析[J]. 原子能科学技术,2017, 51(12): 2288-2293. doi: 10.7538/yzk.2017.51.12.2288
    [16]
    DEMUTH S F. SP100 space reactor design[J]. Progress in Nuclear Energy, 2003, 42(3): 323-359. doi: 10.1016/S0149-1970(03)90003-5
    [17]
    LEE H C, HAN T Y, LIM H S, et al. An accident-tolerant control drum system for a small space reactor[J]. Annals of Nuclear Energy, 2015, 79: 143-151. doi: 10.1016/j.anucene.2015.02.001
    [18]
    DEWAN L. Molecular dynamics simulation and topological analysis of the network structure of actinide-bearing materials[D]. Cambridge: Massachusetts Institute of Technology, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (5) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return