Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
You Ersheng, Li Yiyi, Xing Dianchuan, Jiang Shunli, Wang Tianmi, Xu Jianjun. CFD Sensitivity Study of Stirling High Temperature Components Based on Heat Pipe Heat Transfer[J]. Nuclear Power Engineering, 2025, 46(S1): 220-227. doi: 10.13832/j.jnpe.2025.S1.0220
Citation: You Ersheng, Li Yiyi, Xing Dianchuan, Jiang Shunli, Wang Tianmi, Xu Jianjun. CFD Sensitivity Study of Stirling High Temperature Components Based on Heat Pipe Heat Transfer[J]. Nuclear Power Engineering, 2025, 46(S1): 220-227. doi: 10.13832/j.jnpe.2025.S1.0220

CFD Sensitivity Study of Stirling High Temperature Components Based on Heat Pipe Heat Transfer

doi: 10.13832/j.jnpe.2025.S1.0220
  • Received Date: 2025-01-06
  • Rev Recd Date: 2025-03-10
  • Publish Date: 2025-06-15
  • The heat pipe-Stirling coupling structure refers to the geometric and heat transfer interface between heat pipe bundles and the Stirling generator in the heat-pipe nuclear reactor system, responsible for transferring core heat from the heat pipes to the helium working fluid inside the Stirling engine. This study employs the computational fluid dynamics (CFD) method to numerically analyze the heat transfer process in the heat pipe-Stirling coupling structure, investigating the influence of various cold and hot boundary conditions on characteristic parameters such as effective heat transfer capacity, total temperature difference, and temperature distribution on the channel surface. The results show that the heat transfer capacity of helium side has a certain influence on the heat transfer process, and increasing the convective heat transfer coefficient or decreasing the helium temperature is beneficial to further improve the effective heat transfer. In contrast, the boundary conditions on the heat pipe side have a greater influence on the heat transfer process, which may cause a large temperature gradient at the initial position of the coupling structure and obviously increase the total heat transfer temperature difference, thus affecting the heat transfer safety of the heat pipe. Therefore, it is necessary to improve the heat transfer capability from heat pipes to Stirling high-temperature components while limiting the maximum heat flux density below 150 kW/m² to ensure thermal safety during heat pipe reactor system operation.

     

  • loading
  • [1]
    WALKER G, SENFT J R. Free Piston Stirling Engines[M]. Springer, Berlin, 1985, 128-144.
    [2]
    SLABY J G. Overview of NASA Lewis research center free-piston Stirling engine activities[C]//19th Intersociety Energy Conversion Engineering Conference. San Francisco: U. S. Department of Energy, 1984.
    [3]
    SLABY J G. Overview of free-piston Stirling SP-100 activities at the NASA Lewis research center[C]//3rd International Stirling Engine Conference. Rome: U. S. Department of Energy, 1986.
    [4]
    GIBSON M A, POSTON D I, MCCLURE P, et al. Kilopower reactor using Stirling technology (KRUSTY) nuclear ground test results and lessons learned: NASA/TM—2018-219941[R]. Cleveland: National Aeronautics and Space Administration, Glenn Research Center, 2018.
    [5]
    POSTON D I, MCCLURE P R, DIXON D D, et al. Experimental demonstration of a heat pipe–Stirling engine nuclear reactor[J]. Nuclear Technology, 2014, 188(3): 229-237. doi: 10.13182/NT13-71
    [6]
    GIBSON M A, POSTON D I, MCCLURE P R, et al. Heat transport and power conversion of the Kilopower reactor test[J]. Nuclear Technology, 2020, 206(S1): 31-42.
    [7]
    骆成栋,罗雨微,杨伟杰,等. 美国空间核动力斯特林电源系统技术发展分析[J]. 国际太空,2021(6): 44-48. doi: 10.3969/j.issn.1009-2366.2021.06.011
    [8]
    张蓉,闫春杰,罗新奎,等. 不同温比下自由活塞斯特林发电机的数值研究[J]. 低温工程,2024(5): 79-86. doi: 10.3969/j.issn.1000-6516.2024.05.010
    [9]
    李雪岭,李冰淇,刘洋,等. 月球碟式斯特林光热发电系统性能分析[J]. 工程热物理学报,2024, 45(12): 3603-3610.
    [10]
    常德鹏,孙岩雷,王珏,等. 双作用斯特林热机内部气体微团运行机理数值研究[J]. 太阳能学报,2024, 45(6): 389-395.
    [11]
    周远,罗二仓. 热声热机技术的研究进展[J]. 机械工程学报,2009, 45(3): 14-26.
    [12]
    毕天骄,吴张华,余国瑶,等. 热声发动机核心单元热功转换性能的研究[J]. 工程热物理学报,2017, 38(12): 2542-2547.
    [13]
    游尔胜,张廷,张友佳,等. 斯特林动力转换技术在微型核装置中的应用分析[J]. 科学技术创新,2023(9): 58-62. doi: 10.3969/j.issn.1673-1328.2023.09.016
    [14]
    游尔胜,张廷,幸奠川,等. 斯特林动力转换系统性能及应用技术研究[J]. 核动力工程,2024, 45(5): 269-276.
    [15]
    SCHREIBER J G. Summary of Stirling convertor testing at GRC[C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego: AIAA, 2006.
    [16]
    BRIGGS M H, GENG S M, PEARSON J B, et al. Summary of test results from a 1 kWe-class free-piston Stirling power convertor integrated with a pumped NaK loop: NASA/TM—2010-216934[R]. Cleveland: National Aeronautics and Space Administration, Glenn Research Center, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (3) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return