高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卧式铅铋堆芯氧化腐蚀特性研究

陆定晟 王琛 王成龙 岳倪娜 杨平 田文喜 苏光辉 秋穗正

陆定晟, 王琛, 王成龙, 岳倪娜, 杨平, 田文喜, 苏光辉, 秋穗正. 卧式铅铋堆芯氧化腐蚀特性研究[J]. 核动力工程, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096
引用本文: 陆定晟, 王琛, 王成龙, 岳倪娜, 杨平, 田文喜, 苏光辉, 秋穗正. 卧式铅铋堆芯氧化腐蚀特性研究[J]. 核动力工程, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096
Lu Dingsheng, Wang Chen, Wang Chenglong, Yue Nina, Yang Ping, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core[J]. Nuclear Power Engineering, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096
Citation: Lu Dingsheng, Wang Chen, Wang Chenglong, Yue Nina, Yang Ping, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core[J]. Nuclear Power Engineering, 2023, 44(3): 96-103. doi: 10.13832/j.jnpe.2023.03.0096

卧式铅铋堆芯氧化腐蚀特性研究

doi: 10.13832/j.jnpe.2023.03.0096
基金项目: 国家重点研发计划(2019YFB1901300)
详细信息
    作者简介:

    陆定晟(2000—),男,硕士研究生,现从事铅基快堆热工水力及杂质特性研究,E-mail: Ldingsheng@stu.xjtu.edu.cn

    通讯作者:

    王成龙,E-mail: chlwang@mail.xjtu.edu.cn

  • 中图分类号: TL334

Study on Oxidation Corrosion Characteristics of Horizontal Lead-Bismuth Reactor Core

  • 摘要: 为开展卧式铅铋堆芯氧化腐蚀特性研究,本研究建立液态铅铋氧化腐蚀模型,并基于计算流体动力学方法,运用输运方程源项自定义方法实现耦合计算。研究表明,基准工况下堆芯燃料棒表面氧化层最厚位于出口位置处,中心位置燃料棒表面氧化层厚度显著高于靠近燃料组件盒燃料棒表面氧化层。10000 h后中心位置燃料棒表面仍保持双层氧化层结构,双层氧化层平均总厚度为1.32 μm。本研究提出了铅铋堆芯氧化腐蚀特性数值模拟研究方法,能够用于铅铋堆芯氧化腐蚀的预测。

     

  • 图  1  氧化层厚度模拟与动态实验值对比[21-22]

    Figure  1.  Comparison between the Simulation and Dynamic Experimental Results of Oxide Layer Thickness

    图  2  堆芯径向布置和1/6组件选取图

    Figure  2.  Core Radial Layout and 1/6 Component Selection Diagram

    图  3  壁面网格划分图

    Figure  3.  Wall Meshing Diagram

    图  4  5 s时燃料棒表面分布云图

    Figure  4.  Cloud Diagram of Fuel Rod Wall Surface Distribution at 5 s

    图  5  5 s时堆芯出口冷却剂参数分布云图

    Figure  5.  Cloud Diagram of Outlet Coolant Distribution at 5 s

    图  6  各燃料棒表面双层氧化层平均总厚度

    Figure  6.  Average Total Oxide Layer Thickness of Each Fuel Rod Wall

    图  7  燃料棒表面各氧化层平均厚度随时间变化

    ①—总氧化层;②—尖晶石层;③—磁铁矿层

    Figure  7.  The Average Oxide Layer Thickness of Fuel Rod Wall Varies with Time

    图  8  燃料棒表面氧化层厚度轴向变化

    Figure  8.  Axial Change of Oxide Layer Thickness on Fuel Rod Wall

    表  1  磁铁矿层中铁扩散系数及氧活性浓度计算式[15-17]

    Table  1.   Formula for Calculating Iron Diffusion Coefficient and Oxygen Active Concentration in Magnetite Layer

    扩散系数计算式/值
    ${D_{\text{v}}}$$\begin{gathered} 0.177\exp \left( {\dfrac{{ - 14600}}{T}} \right) + 1.16 \times {10^{ - 3}} \times (1 - \eta )\exp \left( { - \dfrac{{8670}}{T}} \right) \\ \eta = \dfrac{1}{{\left[ {1 + 3 \times {{10}^{ - 3}}\exp \left( {\dfrac{{11900}}{T}} \right)} \right]}} \\ \end{gathered} $
    ${D_{\text{I}}}$$\dfrac{{1.22 \times {{10}^4}\exp \left( { - \dfrac{{27700}}{T}} \right)}}{{1 + 1.56 \times {{10}^6}\exp \left( { - \dfrac{{20100}}{T}} \right)}}$
    ${K_{\text{v}}}$$2.04 \times {10^{ - 7}}\exp \left( {\dfrac{{27170}}{T}} \right)$
    ${K_{\text{I}}}$$1.93 \times {10^3}\exp \left( { - \dfrac{{43140}}{T}} \right) + 3.01 \times {10^9}\exp \left( { - \dfrac{{63270}}{T}} \right)$
    $ \dfrac{{D_{{\text{sp}}}^{{\text{Topfer}}}({\text{I}})}}{{D_{{\text{mag}}}^{{\text{Topfer}}}({\text{I}})}} $$3.3 \times {10^{ - 6}} \times {\left( {a_{{{\text{O}}_2}}^{{\text{sp}}/{\text{mag}}}} \right)^{ - 0.18}}$
    $ \dfrac{{D_{{\text{sp}}}^{{\text{Topfer}}}({\text{V}})}}{{D_{{\text{mag}}}^{{\text{Torfer}}}({\text{V}})}} $0.7
    $a_{{{\text{O}}_2}}^{{\text{T}}91/{\text{sp}}}$$\begin{gathered} a_{ {\text{Fe} } }^{ - \frac{3}{2} }\exp \left( {\dfrac{ {\Delta {G^0} } }{ {RT} } } \right) \\ {a_{ {\text{Fe} } } } = 0.9 \\ \Delta {G^0} = - 549.05 + 0.1531T \\ \end{gathered}$
    $a_{{{\text{O}}_2}}^{{\text{mag}}/{\text{LM}}}$$\begin{gathered} \exp \left( {2\dfrac{ {\Delta G_{^{\text{O} } }^0} }{ {RT} } + 2\ln \dfrac{ { {M_{_{^ {\text{LM} } } } } } }{ { {M_{_{^{\text{O} }}} } } } + 2\ln {C_{_{^{\text{O} }}} } } \right) \\ \Delta G_{^{\text{O} } }^0 = - 127 + 0.0279T \\ \end{gathered}$
      T—局部温度,K;CO—氧浓度,%;$\Delta {G^0}$和$\Delta G_{^{\text{O}}}^0$—分别为氧化反应四氧化三铁和氧化铅的吉布斯自由能,kJ/mol;MLMMO—分别为铅铋与氧的相对分子(原子)质量
    下载: 导出CSV

    表  2  堆芯主要几何及基准运行工况参数

    Table  2.   Main Core Geometric Parameters and Standard Operating Conditions

    参数参数值
    反应堆热功率/MW1.5
    燃料棒直径/mm9.0
    燃料棒中心距/mm10.17
    燃料组件内边间距/mm123.3
    堆芯活性区高度/mm290
    燃料棒总数量/根889
    冷却剂入口温度/℃300
    冷却剂总流量/(kg·s−1)201.28
    冷却剂运行压力/MPa0.1
    下载: 导出CSV

    表  3  主要模拟计算条件参数

    Table  3.   Main Simulated Calculation Condition Parameters

    边界条件设置数值
    入口速度边界/(m·s−1)0.657
    温度/℃300
    氧浓度1×10−8
    出口压力边界/Pa0
    燃料棒表面热流密度/(W·m−2)如式(15)所示
    绝热壁面无滑移壁面
    下载: 导出CSV

    表  4  网格划分情况表

    Table  4.   Meshing Table

    划分方案网格1网格2网格3网格4
    网格总数量573万746万934万1064万
    轴向氧浓度相对误差/%821
    径向壁面切应力相对误差/%1.10.60.3
    下载: 导出CSV
  • [1] MIHARA T, TANAKA Y, ENUMA Y, et al. Feasibility studies on commercialized fast breeder reactor system (3) - HLMC Fast Reactor[C]. Washington: IASMiRT, 2001.
    [2] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [3] ZHANG J S. A review of steel corrosion by liquid lead and lead–bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. doi: 10.1016/j.corsci.2009.03.013
    [4] FAZIO C, BALBAUD F. Corrosion phenomena induced by liquid metals in Generation IV reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Cambridge: Woodhead Publishing, 2017: 23-74.
    [5] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [6] ZHANG Y, ZHANG D L, WANG C L, et al. Oxygen transport analysis in lead-bismuth eutectic coolant for solid-phase oxygen control[J]. Annals of Nuclear Energy, 2021, 154: 108128. doi: 10.1016/j.anucene.2021.108128
    [7] TEDMON C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe‐Cr alloys[J]. Journal of The Electrochemical Society, 1966, 113(8): 766-768. doi: 10.1149/1.2424115
    [8] MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [9] WANG C L, ZHANG Y, ZHANG D L, et al. Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control[J]. Nuclear Engineering and Technology, 2021, 53(7): 2221-2228. doi: 10.1016/j.net.2021.01.031
    [10] 苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013: 221-226.
    [11] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [12] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470°C (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [13] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [14] MARTINELLI L, BALBAUD-CÉLÉRIER F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450–600°C temperature range[J]. Materials and Corrosion, 2011, 62(6): 531-542. doi: 10.1002/maco.201005871
    [15] BACKHAUS‐RICOULT M, DIECKMANN R. Defects and cation diffusion in magnetite (VII): Diffusion controlled formation of magnetite during reactions in the iron‐oxygen system[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1986, 90(8): 690-698.
    [16] DIECKMANN R. Defects and cation diffusion in magnetite (IV): Nonstoichiometry and point defect structure of magnetite (Fe3δO4) [J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1982, 86(2): 112-118.
    [17] Fazio C, Sobolev V P, Aerts A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies – 2015 edition[R]. Organisation for Economic Co-Operation and Development, 2015.
    [18] HE B X, NING L, MINEEV M. A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop[J]. Journal of Nuclear Materials, 2001, 297(2): 214-219. doi: 10.1016/S0022-3115(01)00603-1
    [19] CHEN T Y, MOCCARI A, MACDONALD D D. Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48(3): 239-255. doi: 10.5006/1.3315930
    [20] SILVERMAN D C. Technical note: On estimating conditions for simulating velocity-sensitive corrosion in the rotating cylinder electrode[J]. Corrosion, 1999, 55(12): 1115-1118. doi: 10.5006/1.3283948
    [21] SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450°C[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
    [22] TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-438. doi: 10.1016/j.jnucmat.2017.07.031
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  3480
  • HTML全文浏览量:  62
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-17
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回