Advance Search
Reactor Physics
Development and Verification of Two-step Spectrum Unfolding Code
Hu Xiao, Huang Yi, Wang Jie
2024, 45(6): 1-8.   doi: 10.13832/j.jnpe.2024.06.0001
Abstract(16) HTML(4) PDF(0)
Abstract:
To address the challenge of unknown preset spectra, this paper introduces a two-step spectrum unfolding method that combines the generalized regression neural network (GRNN) and the iterative algorithm. We have independently developed the spectrum unfolding codes for GRNN and iteration and conducted separate and comprehensive validations of the codes. Initially, we utilized activation method data from the Chinese Experimental Fast Reactor (CEFR) to validate the codes. The results indicated that at neutron energies greater than 0.1 MeV, the GRNN results deviated by a maximum of 10.36% from the theoretical spectra. The iterative method’s results deviated by a maximum of 9.15% compared to those obtained using the least squares method. The calculated single nuclear reaction rates showed a maximum relative deviation of 11.71% from the experimental values, indicating good agreement. Furthermore, the GRNN method demonstrated higher accuracy compared to the iterative method without accurate pre-set spectra. Finally, comprehensive validation was performed using Russian boron carbide irradiation data, revealing a maximum deviation of 11.42% in the fast neutron region between the two-step method and the iterative method with pre-set spectra. Therefore, employing a "two-step spectrum unfolding method" to address the challenge of unknown pre-set spectra is feasible, with errors remaining within acceptable limits. The innovative spectrum unfolding method introduced in this paper offers fresh perspectives for the spectrum unfolding of new reactors and offers significant reference value for experiments with unknown pre-set spectra.
Thermohydraulics
Research on Thermal Response Characteristics of Space Nuclear Power in High-Temperature and High-Velocity Impact Experiment under Accidental Reentry
Zhou Xu, Hu Yupeng, Wang Yijun, Wan Kun, Deng Zhifang, Zhu Changchun, Hu Shaoquan
2024, 45(6): 47-54.   doi: 10.13832/j.jnpe.2024.06.0047
Abstract(9) HTML(4) PDF(2)
Abstract:
High-temperature and high-velocity impact simulation test is a significant experiment to evaluate the safety of space nuclear power reactor in the accident impact on ground after accidental reentry. In this paper, a finite volume model coupling conduction, convection and radiation is established for the heat loading and high-velocity flight phase of the test, and the thermal response characteristics of the core simulator of the space nuclear reactor in the test are numerically studied, and the effects of loading temperature change rate and diameter-height ratio are analyzed. The results show that during the heat loading phase, the highest temperature and the lowest temperature of the core simulator are located at the junction of the side surface and the bottom surface and at the center of the simulator respectively. The time to reach thermal equilibrium is not only affected by the change rate of loading temperature, but also depends on the diameter-height ratio of the simulator. In the high-velocity flight phase, the highest and lowest temperatures of the core simulator are opposite to those in the heat loading phase, and the lowest temperature decreases with the increase of the diameter-height ratio and flight time. The research results can support the development and experimental design of high-temperature and high-velocity impact simulation test system.
Nuclear Fuel and Reactor Structural Materials
Study on the Effects of Accident Tolerant Fuels on the Safety of CPR1000 Nuclear Power Plants
Liu Pingping, Liu Mengying, Xu Haode
2024, 45(6): 98-105.   doi: 10.13832/j.jnpe.2024.06.0098
Abstract(9) HTML(5) PDF(0)
Abstract:
In this paper, CPR1000 is taken as the reference unit. According to the Level 1 CPR1000 Probabilistic Safety Analysis (PSA) results, the Large Break LOCA, Intermediate Break LOCA, Small Break LOCA, Station Blackout (SBO), Total Loss of Feedwater (TLOFW) and Anticipated Transient without Trip (ATWT) with Loss of Main Feedwater (LOMF) are selected as the representative design extend condition (DEC) accident scenarios. Using LOCUST and SPRUCE, the thermal and hydraulic codes developed by China Nuclear Power Technology Research Institute Co., Ltd. based on the performance of accident tolerant fuel (ATF), deterministic calculations are carried out for the five types of ATF under development, namely, ATF-1, ATF-2, ATF-3, ATF-4, and ATF-5. Compared with the traditional UO2-Zr material, the accident process, core damage time, system success criteria and personnel response time of different ATFs under the above typical accidents are analyzed. It is found that the lower peak cladding temperature and higher cladding limit temperature of ATF in the accident make CPR1000 unit have greater safety margin, which provides support for ATF material selection. Based on the results of deterministic analysis, the Level 1 PSA model is established for different ATF, and the influence of different ATF materials on the safety of CPR1000 unit is given from the perspective of probability theory. The results show that there is no substantial benefit from the direct application of existing ATF to existing reactors. Based on the deterministic and probabilistic analyses, the development direction of reactor based on ATF is given in this paper.
Structure and Mechanics
Research on Vibration-induced Noise Simulation of Main Control Room of High-temperature Gas-cooled Reactor
Zhu Tenghao, Wang Hongtao, Wang Haitao
2024, 45(6): 132-138.   doi: 10.13832/j.jnpe.2024.06.0132
Abstract(6) HTML(6) PDF(1)
Abstract:
Noise in the main control room is one of the major concerns for operational safety of the nuclear power plant. In this paper, the impact of the main steam pipeline vibration on the noise level in the main control room of the high temperature gas-cooled reactor (HTGR) is investigated by using a structural finite element model and an acoustic boundary element model. A finite element model for frequency response analysis of the nuclear island of one HTGR conceptual design, and a boundary element model for acoustic analysis of the main control room in the frequency domain, are established respectively, to predict the noise levels in the main control room dominated by vibration transfer from the main steam pipelines. The influence patterns of various main steam pipes are explored, and the wall vibration that contributes most to the noise level of the main control room is identified based on acoustic contribution analysis. A method for optimizing the main control room noise through physical partitioning is proposed. The results show that, horizontal vibrations of the main steam pipeline generate higher noise levels in the control room compared to vertical vibrations. The maximum noise caused by the vibration of the main steam pipeline exceeds 60 dB. The walls near the main steam isolation valve room and the ceiling contribute the most to the indoor noise in the control room. Through physical partitioning, the noise level of the control room can be reduced significantly.
Circulation and Equipment
Research on Sensitivity Analysis Model of Grounding Measurement Capacitance Rod Position Sensor
Li Yanlin, Qin Benke, Bo Hanliang
2024, 45(6): 139-146.   doi: 10.13832/j.jnpe.2024.06.0139
Abstract(5) HTML(3) PDF(0)
Abstract:
Control rod position sensor is one of the six core components of the control rod hydraulic drive system, which provides the only true rod position indication for nuclear reactors. The grounding measurement capacitance rod position sensor has the advantages of high precision and strong anti-interference ability. Control rod positions can be measured step-by-step by this kind of sensors. In order to clarify the capacitive sensitive mechanism of this kind of capacitance rod position sensors, the sensitivity analysis model of the sensor is established by conformal mapping. Model modification and model validation are conducted by the numerical simulation and results of the static calibration experiments. The results show that the static measurement characteristics of the grounding measurement capacitance rod position sensor can be accurately analyzed by the sensitivity analysis model. The relative error between the results obtained by the sensitive analysis model and experiments is 3.4%. The sensitivity analysis model can be used for structural analysis and optimal design of the sensor.
Safety and Control
Research on Nuclear Signal Generator Based on Signal Characteristics of Pulsed Neutron Detector
Luo Tingfang, Bao Chao, Gao Zhiyu, Wang Li, Sun Qi
2024, 45(6): 159-165.   doi: 10.13832/j.jnpe.2024.06.0159
Abstract(6) HTML(5) PDF(0)
Abstract:
Pulsed neutron detector converts neutron fluence rate into random weak current pulse signal. Due to the particularity of this signal, nuclear measurement equipment generally requires reactor tests to verify the actual detection performance. Because of the research method by reactor test costs a lot and has time limit, this paper, based on a typical pulsed neutron detector such as boron-coated proportional counting tube, studies a pulsed detector signal model and its nuclear signal generator implementation scheme. The characteristics of each key part are verified through simulation. The verification results show that: the proposed nuclear signal generator scheme can generate a sequence of time intervals satisfying the exponential distribution, the single current pulse shape is similar to the detector and the amplitude can vary randomly in a uniform distribution.
Operation and Maintenance
Study on Prediction and Diagnosis of Fuel Rod Break Size during Degassing Operation of PWR
Ye Yaoxin, Fu Pengtao
2024, 45(6): 220-225.   doi: 10.13832/j.jnpe.2024.06.0220
Abstract(15) HTML(6) PDF(1)
Abstract:
The operation data of PWR nuclear power plant show that after the unit implements large flow degassing operation, the specific activity of fission products of primary coolant oscillates violently in a short time, which makes the fuel damage prediction method based on the average core state fission release-to-birth ratio (R/B) have prediction bias. Based on the parameters of degassing system and the mechanism of inert gas release in PWR nuclear power plant, this paper establishes a modified prediction and analysis model of inert gas release in degassing operation, gives the calculation method of degassing factor and inert gas release rate under degassing conditions, and optimizes the traditional prediction method of fuel rod break size based on R/B. The modified prediction method of degassing operation has been applied and verified in a PWR nuclear power plant. The maximum relative deviation of specific activities of six common inert gas nuclides predicted is 33.4%, and the others are less than 20%. The predicted fuel rod break size is large, which is consistent with the inspection results after shutdown.
Column of Science and Technology on Reactor System Design Technology Laboratory
Investigation on Hybrid Discontinuous Galerkin Method Based on First-Order Neutron Transport Equation
Sun Qizheng, Liu Xiaojing, Zhang Tengfei
2024, 45(6): 248-253.   doi: 10.13832/j.jnpe.2024.06.0248
Abstract(8) HTML(5) PDF(1)
Abstract:
The development of advanced reactor designs imposes higher demands on neutronic numerical methods. To achieve accurate and efficient simulation of complex problems, this paper introduces a hybrid discontinuous Galerkin (HDG) method based on the first-order hyperbolic neutron transport equation (NTE). The method decouples the original equation into independent equations for each angular direction using the discrete-ordinates (SN) method in angular space. In spatial discretization, this paper employs an upwind scheme that results in a blocked-lower-triangular global matrix coupling system, making it well-suited for complex, geometrically heterogeneous neutron transport scenarios with a large number of meshes. The study evaluates the performance of the proposed HDG method using the TAKEDA1 benchmark and a heterogeneous assembly problem. The results demonstrate that the HDG method achieves stable convergence for the aforementioned problems, with a maximum error between the effective multiplication coefficient keff and the reference solution of 108 pcm (1pcm = 10−5). In addition, compared with the traditional second-order even-parity method, the first-order HDG method is more efficient in spatial scanning, and the acceleration ratio is about 2 times in the above examples. Therefore, the proposed HDG method can provide an alternative solution for complex reactor problems.
Column of State Key Laboratory of Advanced Nuclear Energy Technology
Design and Experimental Study of High Temperature Flowing Liquid Metal Corrosion Device
Song Xiaoyong, Pang Yongqiang, Meng Xiancai, Tian Shujian, Zhang Dehao, Li Xu
2024, 45(6): 263-270.   doi: 10.13832/j.jnpe.2024.06.0263
Abstract(6) HTML(8) PDF(0)
Abstract:
Aiming at the compatibility problem of high-temperature flowing liquid metal on structural materials, especially the corrosion problem, in the first wall of liquid lithium and liquid metal blanket components in the nuclear fusion reactor, a high-temperature flowing liquid metal corrosion experimental device is designed, and three-dimensional numerical simulation and analysis of the flow and heat transfer characteristics of the liquid metal are carried out by using the software ANSYS. The simulation and test results show that the experimental device can realize the conditions of liquid lithium temperature (300-600℃) and flow rate (< 0.2 m/s) in the first wall and blanket structure, and is qualified to study the corrosion characteristics of dynamic liquid lithium and structural materials at high temperature. Meanwhile, the corrosion behavior of domestically produced low-activation ferrite/martensite steel (9Cr-0.4Mo-0.3Y steel) in 0.2 m/s liquid Li at 550℃ for 1000 hours (h) is preliminarily studied. The results show that 9Cr-0.4Mo-0.3Y steel experiences obvious intergranular corrosion and pitting corrosion, and the surface hardness of the sample is reduced to different degrees due to non-uniform corrosion. The XRD analysis reveals that there is no phase transformation on the corroded surface of 9Cr-0.4Mo-0.3Y steel. The 03-1049#FeNi peak is detected on the sample' surface due to the dissolution and migration of Ni element from the 304 stainless steel vessel.
MORE
Development Status and Outlook for Nuclear Power in China
Zhao Chengkun
2018, 39(5): 1-3.   doi: 10.13832/j.jnpe.2018.05.0001
[Abstract](1244) [PDF 0KB](17)
摘要:
主要介绍了我国在建、在运核电机组的基本状况和最新进展,以及我国在提升核设施安全水平方面的相关措施。在国家能源局印发的《能源技术创新“十三五”规划》要求之下,我国推出一系列先进核能和小型堆的发展计划,开展了“海洋核动力平台示范工程建设”并建立相关标准。最后总结了中国核电目前面临的挑战和未来的展望。
Initiation and Development of Heat Pipe Cooled Reactor
Yu Hongxing, Ma Yugao, Zhang Zhuohua, Chai Xiaoming
2019, 40(4): 1-8.  
[Abstract](1847) [PDF 1128KB](600)
摘要:
 
热管冷却反应堆采用固态反应堆设计理念,通过热管非能动方式导出堆芯热量。本文总结了热管冷却反应堆的概念初创、积极探索、重大突破的发展历程;分析了热管冷却反应堆的技术特点,包括固态属性、固有安全性高、运行特性简单、易于模块化与易扩展和运输特性良好等核心优势;归纳了热管冷却反应堆中热管性能、材料工艺、能量转换等技术现状,并提出热管冷却反应堆进一步发展将面临的材料、制造工艺、运行可维护性等挑战,从而明确了热管冷却反应堆未来的发展趋势,为革新型热管冷却反应堆技术的发展与应用提供良好的方向指引。总体而言,热管冷却反应堆在深空探测与推进、陆基核电源、深海潜航探索等场景中具有广阔的应用前景,有可能成为改变未来核动力格局的颠覆性技术之一。
Present Situation and Prospect of Radioactive Waste Liquid Treatment Technology
Sun Shouhua, Ran Mingdong, Lin Li, Liu Wenlei, Li Zhenchen, Li Wenyu
2019, 40(6): 1-6.   doi: 10.13832/j.jnpe.2019.06.0001
[Abstract](1451) [PDF 178KB](807)
摘要:
放射性废液得到有效处理是世界各国核工业迅猛发展的前提,其关键技术的现状和发展方向也是我国核工业界关注的焦点。本文介绍了几种放射性废液处理的传统方法及涌现出的新技术,概述了各种方法的原理及优、缺点,同时讨论了放射性废液处理技术今后的研究方向及发展趋势。
Reliability of Digital Pressure Control Device of Nuclear Pressurizer Based on Dynamic Fault Tree
Qian Hong, Gu Yaqi, Liu Xinjie
2019, 40(3): 103-108.   doi: 10.13832/j.jnpe.2019.03.0103
[Abstract](1080) [PDF 0KB](2)
摘要:
以配置四取中逻辑输入模块的核电厂稳压器数字压力控制装置为研究对象,建立其故障树模型,包括四取中逻辑的动态部分和其他设备的静态部分,采用马尔科夫方法分析动态部分,再根据逻辑关系分析整体故障树,最后,围绕可靠度和重要度评价四取中逻辑的可靠性及其对整个装置可靠性的提升效果,结果表明:四取中逻辑在可靠性方面优化程度相对较高。
General Technology Features of Reactor Core and Safety Systems Design of HPR1000
Yu Hongxing, Zhou Jinman, Leng Guijun, Deng Jian, Liu Yu, Wu Qing, Liu Wei
2019, 40(1): 1-7.   doi: 10.13832/j.jnpe.2019.01.0001
[Abstract](1054) [PDF 0KB](18)
摘要:
“华龙一号”是我国自主设计研发的具有完整知识产权的第三代百万千瓦级压水堆核电技术。本文介绍了“华龙一号”的产生历程,系统论述了“华龙一号”反应堆堆芯与安全设计特点,包括“华龙一号”研发过程中开展的堆芯核设计、热工水力设计、安全设计、设计验证及“华龙一号”持续开展的设计改进与优化等内容,通过采用新的设计理念和设计技术,全面提高了“华龙一号”作为三代核电技术的经济性、灵活性和安全性。
Research on Condition Monitoring Technology for Nuclear Power Plant Equipment Based on Kernel Principal Component Analysis
Wu Tianhao, Liu Tao, Shi Haining, Zhang Tao, Tang Tang
2020, 41(5): 132-137.  
[Abstract](436) [PDF 0KB](8)
摘要:
为解决核电厂传统监测手段的局限性,提出将核主元分析法(KPCA)引入核电厂设备在线监测领域中,并设计了监测模型建设方法以及在线监测策略。为验证算法的有效性,将其应用在国内某核电机组电动主给水泵的真实监测案例中。仿真结果表明,KPCA算法可适应核电厂设备监测的要求,能比现有阈值监测手段提供更为早期的故障预警。同时,相比于常规的主元分析法(PCA),KPCA算法能够提取各变量之间的非线性关系,识别出设备不同的运行模式,有效减少误报警。
Study on Process and Properties of Pulse Laser Prepared Cr Coating for Accident Tolerant Fuel Claddings
Li Rui, Liu Tong
2019, 40(1): 74-77.   doi: 10.13832/j.jnpe.2019.01.0074
[Abstract](415) [PDF 0KB](3)
摘要:
介绍了中广核研究院在事故容错燃料(ATF)包壳领域的最新成果,通过预置粉末式脉冲激光熔覆技术,在不同的功率下制备出不同厚度的锆包壳管Cr保护层;通过高温蒸汽氧化增重数据发现,采用半导体脉冲激光熔覆技术、脉冲激光功率50~60 W、螺距0.8~0.9 mm、角速度10°/s等参数条件下制备Cr涂层可以获得较好的抗高温氧化性能,证明保护的效果直接受涂层质量控制。通过SEM分析了涂层的显微结构,采用扩散机理解释了Cr涂层在1200℃下与锆合金基体相容性良好的原因。
Design of Intelligent Wireless Vibration Sensor for Wireless Monitoring of Rotating Device Operating Condition
Yu Ren, Xie Xuyang, Qing Fatao, Peng Qiao, Wang Tianshu
2020, 41(3): 221-226.   doi: 10.13832/j.jnpe.2020.03.0221
[Abstract](347) [PDF 0KB](6)
摘要:
      为提高已投入运行核动力装置旋转设备的运行数据采集和状态监测能力,需要解决安装传感器和敷设配套线缆困难的问题。本文采用现场可编程门阵列(FPGA)作为主控单元,设计了一种基于Zigbee物联网通信技术的智能无线振动传感器,并给出了其电路构成、工作原理,以及嵌入式控制软件的工作流程。通过对此传感器进行性能测试,结果表明该传感器功耗低,实现了对振动信号的连续采集、智能分析与上传。该无线传感器安装简单,无需敷设供电和信号线缆,可应用于构建核动力装置旋转设备的状态监测系统。
Analysis of Human Errors in Severe Accident of Nuclear Power Plant Based on Cognitive Model and Fault Tree
Zhang Li, Chen Shuai, Qing Tao, Sun Jing, Liu Zhaopeng
2020, 41(3): 137-142.   doi: 10.13832/j.jnpe.2020.03.0137
[Abstract](521) [PDF 0KB](3)
摘要:
      为分析核电厂应急人员在处理严重事故时可能发生的人因失误,通过建立不同应急人员的认知模型及识别相应的行为影响因子,在认知功能的基础上识别出13种人因失误模式:信息来源不足、信息可靠性不佳、过早结束对参数的获取、重要数据处理不正确、缓解措施负面影响评估失误、选择不适用当前情景的策略、延迟决策、遗漏重要信息/警报、延迟发觉、软操作失误、信息反馈失效、设备安装/连接/操作失误、延迟实施,并基于故障树分析得出人因失误模式的主要根原因:交流失效、时间压力、事故发展的不确定性、信息接收延误、监视失误、人-机界面不佳和环境因素。分析结果可用于预测严重事故缓解进程中可能出现的人因失误,为核电厂实施严重事故管理和技术改进,以及保障严重事故工况下核电厂安全提供参考。
Neutronic/Thermal-Mechanical Coupling in Heat Pipe Cooled Reactor
Ma Yugao, Liu Minyun, Yu Hongxing, Huang Shanfang, Chai Xiaoming, Xie Biheng, Han Wenbin, Liu Yu, Du Zhengyu, He Xiaoqiang
2020, 41(4): 191-196.  
[Abstract](830) [PDF 0KB](16)
摘要:
热管冷却反应堆(简称“热管堆”)高温运行下的结构热膨胀效应会显著影响反应堆的传热和中子物理输运过程。本文提出了一种考虑固体堆芯显著膨胀的几何更新和反应性反馈方法,并构建了基于动态几何的中子物理/热工/力学3场核热力耦合分析程序。在核热力耦合中主要考虑温度引起微观截面的变化、材料密度的变化以及热膨胀引起堆芯尺寸的变化。基于提出的核热力耦合方法,对MegaPower热管堆进行了核热力耦合分析,分析了不同松弛因子下,堆芯功率分布和径向功率因子的收敛性。核热力计算表明,热膨胀造成堆芯边通道的中子泄漏增加,从而产生负反应性反馈;同时,边通道中子泄漏增加加剧了功率分布的不均匀性,传热恶化,考虑核热力耦合后,径向功率因子从非耦合情形的1.20提升到1.23,燃料峰值温度增加11 K。
Evelopment Characteristics and Inspiration of Marine Nuclear Power
Lu Chuan, Wang Zhonghui, Yu Junchong
2022, 43(1): 1-6.   doi: 10.13832/j.jnpe.2022.01.0001
[Abstract](2793) [FullText HTML](651) [PDF 2825KB](651)
Abstract:
The marine nuclear power technology of the United States and Russia has been leading the world for a long time, and their development experience and technical context have high reference value. Through the analysis and research on the main development process and technology of marine nuclear power in the United States and Russia, this paper innovatively summarizes the common development laws of marine nuclear power in the United States and Russia, such as basic type of reactor system, general test platform and differential configuration from the aspects of technical route and trend, a series of common and differential characteristics followed by marine nuclear power technology in the United States and Russia are excavated and refined, which can provide some reference and enlightenment for the development of marine nuclear power.
Digital Reactor: Development and Challenges
Yu Hongxing, Li Wenjie, Chai Xiaoming, Li Songwei
2020, 41(4): 1-7.  
[Abstract](1369) [PDF 466KB](163)
Abstract:
The digital reactor is an integral numerical simulation platform for the performance of nuclear reactor systems. In the first part of this paper, the development history of the nuclear reactor simulation technology is reviewed. The three technical elements constituting the digital reactor are elaborated, including the target scenario, advanced models and multi-physics coupling technology, and the integrating environment. Although there are several challenges for the development of digital reactors, such as the difficulties in multi-physics and multi-scale computation, the complexity in design optimization, and the insufficient database, the digital reactor can help better analyze key problems that limiting the reactor performances and safety, and better understand the mechanism of  the phenomena that cannot be observed or measured experimentally.
Nuclear Power AI Applications: Status, Challenges and Opportunities
Zhang Heng, Lyu Xue, Liu Dong, Wang Guoyin, Hang Qin, Sha Rui, Guo Bin
2023, 44(1): 1-8.   doi: 10.13832/j.jnpe.2023.01.0001
[Abstract](9582) [FullText HTML](689) [PDF 2166KB](689)
Abstract:
In recent years, artificial intelligence (AI) technology has been widely used in the field of nuclear power to promote nuclear power plants to achieve the goal of improving production efficiency, reducing operating costs and improving operating safety through self diagnosis, self optimization and self adaptation. This paper introduces the AI technology often used in the nuclear power field, summarizes its research status in four typical application scenarios of the nuclear industry, namely, intelligent mine, intelligent design, intelligent manufacturing and intelligent operation and maintenance. Finally, it analyzes the challenges and development trends of the application of AI technology in the nuclear power field from three aspects: data samples, network security, and the explanatory nature of deep learning.
Key Technology of ACP100: Reactor Core and Safety Design
Song Danrong, Li Qing, Qin Dong, Dang Gaojian, Zeng Chang, Li Song, Xiao Renjie, Wei Xuedong
2021, 42(4): 1-5.   doi: 10.13832/j.jnpe.2021.04.0001
[Abstract](4883) [FullText HTML](1222) [PDF 4887KB](1222)
Abstract:
Small modular reactor is a new kind of nuclear energy system. The ACP100 is a multi-purpose modular small PWR with full intellectual property in China. This paper introduces the research and development process, the main characteristics of the reactor core and safety design technology, mainly including the nuclear design, thermal-hydraulic design, safety design concept, inherent safety design, and the strategy for accidents. Through the combination of the deterministic theory and the probabilistic safety assessment, the safety of ACP100 is greatly improved and exceeds the Generation 3 nuclear power plant safety standards.
Present Situation and Prospect of Radioactive Waste Liquid Treatment Technology
Sun Shouhua, Ran Mingdong, Lin Li, Liu Wenlei, Li Zhenchen, Li Wenyu
2019, 40(6): 1-6.   doi: 10.13832/j.jnpe.2019.06.0001
[Abstract](1451) [PDF 178KB](87)
Abstract:
The effective disposal of radioactive waste liquid is the precondition for the rapid development of nuclear industry all over the world, and the current situation and development direction of its key technologies are the focus of attention of the nuclear industry in China. This paper introduces several traditional methods of radioactive waste liquid treatment and the emerging new technology options, summarizes the principles, advantages and disadvantages of various methods, and discusses the research direction and development trend of radioactive waste liquid treatment technology in the future.
Research on the Development Trend of Micro Nuclear Reactor Technology
Du Shuhong, Li Yonghua, Sun Tao, Wang Jun, Liu Xiaowen, Su Gang, Zhao Depeng
2022, 43(4): 1-4.   doi: 10.13832/j.jnpe.2022.04.0001
[Abstract](2130) [FullText HTML](337) [PDF 2053KB](337)
Abstract:
Micro nuclear reactors adopt Generation-IV non-light water reactors, heat pipe reactors and Generation-III light water reactors with high inherent safety, providing long-term and highly reliable power supply for innovative scenario such as remote islands, mining areas, border guard posts and bases, emergency and disaster relief, space exploration and deep-sea exploration. They have broad application prospects, being one of the important technical supports to realize the national strategy. This study summarizes the definition and main R & D reactor types of micro nuclear reactors, and describes the innovative technological characteristics of micro nuclear reactors, such as high inherent safety, easy modularization and expansion, transportability, easy deployment, independent operation and so on, analyzes the development trend of key technologies such as new fuel, integration of main loop, new thermoelectric conversion device, passive safety system, intelligent operation and maintenance and coupling of nuclear energy and other energy sources in China, providing support for the formulation of the technical route for the development of micro nuclear reactors in China.
Initiation and Development of Heat Pipe Cooled Reactor
Yu Hongxing, Ma Yugao, Zhang Zhuohua, Chai Xiaoming
2019, 40(4): 1-8.  
[Abstract](1847) [PDF 1128KB](322)
Abstract:
The heat pipe cooled reactor adopts the solid-state reactor design concept and passively transfer the heat out of the core through heat pipes. This paper summarizes the development history of the heat pipe cooled reactor, from the conceptual initiation, the active exploration and to the breakthrough. The technical characteristics of heat pipe cooled reactors are analyzed, including the key advantages, such as solid properties, inherent safety, simple operation, easy modularization and expansion, and transportability. In addition, this paper summarizes the technical status of heat pipe performance, material technology and energy conversion in heat pipe cooled reactors. The challenges in the further development of heat pipe cooled reactors are put forward, such as material technique, manufacturing, and operation maintainability. The future development trend of heat pipe cooled reactors is clarified, which provides a direction for the development and application of the innovative heat pipe cooled reactor technology. Overall, the heat pipe cooled reactor has broad application prospects in deep space exploration and propulsion, land-based nuclear power supply, sea exploration and other scenarios,  which may become one of the most creative technologies to change the future nuclear power patterns.
Solving Multi-Dimensional Neutron Diffusion Equation Using Deep Machine Learning Technology Based on PINN Model
Liu Dong, Luo Qi, Tang Lei, An Ping, Yang Fan
2022, 43(2): 1-8.   doi: 10.13832/j.jnpe.2022.02.0001
[Abstract](3546) [FullText HTML](574) [PDF 31918KB](574)
Abstract:
This paper elaborates the physics-informed neural network model (PINN), constructs a deep neural network as a trial function, substitutes it into the neutron diffusion equation to form a residual, and takes it as the weighted loss function of machine learning, and then approaches the numerical solution of the neutron diffusion equation by deep machine learning technique; According to the characteristics of diffusion equation, this paper puts forward innovative key technologies such as accelerated convergence method of eigenvalue equation, efficient parallel search technology of effective multiplication coefficient (keff), learning sample grid point uneven distribution strategy, and analyzes the sensitivity of key parameters such as neural network depth, neuron number, boundary condition loss function weight and so on. The verification calculation results show that the method has good accuracy, and the proposed key technology has remarkable results, and explores a new technical approach for the numerical solution of the neutron diffusion equation.
CFD Investigation on Flow and Heat Transfer Characteristics of Fuel Assembly for VVER Reactor
Wang Xiong, Du Daiquan, Zeng Xiaokang, Yang Xiaoqiang, Zan Yuanfeng
2018, 39(3): 6-9.   doi: 10.13832/j.jnpe.2018.03.0006
[Abstract](1393) [PDF 907KB](105)
Abstract:
The flow and heat transfer characteristics of AFA fuel assembly for VVER reactors have been investigated using computational fluid dynamics (CFD) simulation. The flow field, pressure drop and temperature distribution of the coolant in AFA under normal regime have been calculated. The results show that the pressure drop of the spacer grid of AFA is lower than that of the grid having mixing vane. The stagnation zone of coolant appears around the rim of the spacer grid and causes higher temperature in the periphery region of AFA. The power ratio of the circumferential pin around instrumental tube (Kc) with different values has a great effect on the measured temperature of the coolant at FA outlet. The results can be referred in the setting of temperature warning value (ΔTt) for the reactor core during the operation of nuclear power plants.
Radiation Safety System and Its Design Coordination for Nuclear-Powered Ship
Lin Xiaoling
2019, 40(5): 1-5.  
[Abstract](607) [PDF 550KB](51)
Abstract:
Radiation Safety is of great importance for the combat effectiveness of nuclear-powered ships, while overemphasis on radiation safety could influence the performance of carriers negatively. As a result, the optimization of radiation protection is the crucial task in the design of nuclear-powered ships. To achieve this goal, the system of radiation safety for nuclear-powered ships is constructed. The function, main problems to be considered, the control index, the relations and cooperation from inside and outside is analyzed.
Notice
MORE>